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ABSTRACT 
To contribute to systems that reason about human attention, 
our work empirically demonstrates how a user’s mental 
workload changes during task execution. We conducted a 
study where users performed interactive, hierarchical tasks 
while mental workload was measured through the use of 
pupil size. Results show that (i) different types of subtasks 
impose different mental workload, (ii) workload decreases 
at subtask boundaries, (iii) workload decreases more at 
boundaries higher in a task model and less at boundaries 
lower in the model, (iv) workload changes among subtask 
boundaries within the same level of a task model, and (v) 
effective understanding of why changes in workload occur 
requires that the measure be tightly coupled to a validated 
task model. From the results, we show how to map mental 
workload onto a computational Index of Opportunity that 
systems can use to better reason about human attention. 
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INTRODUCTION 
When interacting with applications, users often suffer 
interruption overload. E-mail notifications [19], instant 
messages [7], agent requests [25], and system alerts all 
contribute to this burgeoning epidemic of interruption that 
negatively affects almost every user. When a background 
application interrupts a user at an inopportune moment 
during task execution, the user performs tasks slower [2, 
29], commits more errors [24], makes worse decisions [34], 
and experiences more frustration, annoyance, and anxiety 
[1, 2, 4] than if it had interrupted at a more opportune 
moment. To mitigate the disruptive effects of interruption, 
researchers are investigating systems that reason about 
when to interrupt users [13, 15, 16]. These systems compute 

the cost of interruption using external cues such as desktop 
activity, visual and acoustical analyses of the physical task 
environment, and scheduled activities of the user.  

However, to compute a more accurate cost of interruption,  
systems need a direct measure of a user’s mental workload 
[18]. Researchers have long argued that opportune moments 
for interruption occur during periods of low mental 
workload [2, 7, 10], and posit that these periods occur at 
subtask boundaries during task execution [30]. Interactive 
tasks, however, are composed of hierarchical patterns of 
goal formulation, execution, and evaluation, creating many 
levels of subtask boundaries in a task model [6]. Our work 
empirically shows how a user’s mental workload changes 
during task execution, focusing on subtask boundaries, and 
shows how to map workload to an Index of Opportunity 
that systems can use to better reason about human attention. 

We conducted a user study where 12 users performed two 
interactive, hierarchical tasks. While a user performed the 
tasks, we measured mental workload by measuring relative 
changes in the user’s pupil size using an eye tracking 
system. Research shows that pupil size is a reliable measure 
of mental workload [3, 11, 22]. To analyze response data, 
we developed and validated GOMS models for the tasks 
and precisely aligned pupillary response with the models.  

Our results show that (i) different types of subtasks within a 
task model impose different mental workload on a user, (ii) 
workload decreases at subtask boundaries, (iii) workload 
decreases more at boundaries higher in the task model and 
less at boundaries lower in the model, (iv) mental workload 
changes among subtask boundaries within the same level of 
a task model, and (v) effective understanding of why 
changes in mental workload occur requires that the measure 
of workload be tightly coupled to a validated task model.  

Our work contributes the first evidence showing how much 
mental workload changes at different levels of boundaries 
in a hierarchical task model. From our results, we develop 
an Index of Opportunity that maps mental workload - as 
measured by pupillary response – to a computational index 
that is sensitive to changes in mental workload at subtask 
boundaries. The index would be useful for systems that 
manage human attention – not only on the desktop but also 
in control rooms, aviation cockpits, and in-vehicle displays. 

There is also rapidly growing interest in the use of mental 
workload to evaluate user interfaces [27]. By leveraging our 
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research method of aligning pupillary response data to 
validated task models, interface designers can better link 
periods of unacceptably high workload with specific tasks 
in an interface, targeting those tasks for re-design. 

RELATED WORK 
We discuss posited moments for interruption, discuss 
systems that reason about when to interrupt users, and 
justify our use of pupil size to measure mental workload. 

Posited Moments for Interruption 
An opportune moment for interruption is during a period of 
low mental workload, which has been supported by many 
empirical studies [7-10, 26, 28]. When a user is interrupted 
during a period of low mental workload, the interruption 
causes substantially less disruption than if it had occurred 
during a period of high workload [1, 2, 4]. The challenge is 
to understand when a user’s mental workload changes 
during task execution. 

Miyata and Norman theorize that moments of lower mental 
workload occur between the completion (evaluation) of one 
subtask and the beginning (goal formulation) of the next 
subtask, i.e. at a subtask boundary [30]. Interactive tasks, 
however, are composed of hierarchical, recursive patterns 
of goal formulation, execution, and evaluation, creating 
many levels of subtask boundaries in a task model [6]. 

Our work provides the first empirical findings of how much 
a user’s mental workload changes at subtask boundaries and 
how the changes differ at different levels of boundaries in a 
hierarchical task. Our results contribute to a further 
theoretical understanding of how mental workload changes 
during task execution and makes practical contributions to 
systems that reason about when to interrupt users. 

Reasoning About When to Interrupt Users 
In [13, 15, 16], researchers are constructing computational 
systems that reason about when to interrupt a user by 
weighing the value of information against the cost of 
interruption. The underlying models use external cues such 
as desktop activity, visual and acoustical analyses of the 
physical task environment, and scheduled activities of the 
user to compute a cost of interruption. 

Although researchers recognize the importance of including 
a measure of mental workload in an interruption reasoning 
system, there is no such computational measure available. 
Without an accurate assessment of workload, systems can 
make poor decisions about when to interrupt a user. For 
example, in [13], researchers model periods of desktop 
inactivity as better for interruption than periods of activity. 
Miyata and Norman [30] argue, however, that inactivity is 
generally worse for interruption because those moments 
often represent periods of planning or evaluation, which can 
require more mental workload than subtask execution. 

From our results, we show how to map mental workload 
onto a computational Index of Opportunity for interruption. 

By using the Index of Opportunity as part of a broader 
reasoning framework, a system can make a more accurate 
assessment of the cost of interrupting a user, leading to 
more effective decisions about when to interrupt the user. 

Use of Pupil Size to Measure Mental Workload 
Under conditions of controlled illumination, research shows 
that pupil size is an effective and reliable measure of mental 
workload [11, 12, 22, 31, 35], where the increase in pupil 
size correlates with the increase in mental workload. Beatty 
reviewed a large corpus of experimental data and concluded 
that pupillary response is a reliable indicator of mental 
workload for a task, that the degree of pupillary response 
correlates with the workload of the task, and that this 
phenomenon holds true between tasks and individuals [3]. 
UI researchers are already using pupil size to evaluate the 
mental workload imposed by user interface designs [27]. 

Iqbal et al. [18] showed that pupillary response correlates 
with the mental workload of interactive tasks and 
discovered that changes in mental workload seem to align 
well with the hierarchical model of the task being 
performed. Our current study seeks to better understand this 
relationship.  

Although researchers have also investigated the use of eye 
movement [35], blink rate [23], and heart rate variance [32] 
to approximate mental workload, pupil size offers an 
immediate quantitative measure, which simplifies analysis 
of the response data. Of course, we do not expect users to 
wear existing eye-tracking equipment while performing 
computing tasks. We believe that future technology will 
provide cost-effective, non-intrusive means to effectively 
measure pupil size, e.g., remote eye trackers built into LCD 
monitors [36] or even eye glasses [33], thus justifying our 
use of pupil size in the present work. 

Because pupil size has been repeatedly shown to correlate 
well with changes in mental workload, we believe our use 
of pupil size alone provides a sufficient measure of mental 
workload for this work. While there is a need to cross-
validate mental workload across multiple measures, how to 
effectively align different physiological measures of 
workload is not well developed. Our Index of Opportunity, 
however, may contribute to a common scale appropriate for 
aligning multiple measures in the future. 

USER STUDY 
The purpose of our study is to better understand how much 
a user’s mental workload changes at subtask boundaries and 
how much that change differs at different levels of subtask 
boundaries in a hierarchical task model. Our study also 
investigates whether different types of subtasks induce 
different mental workloads. Specifically, we designed our 
user study to answer the following questions: 

• How much does a user’s mental workload change during 
subtasks? How much does this change depend on the 
level in the task model and the type of the subtask? 
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• How much does a user’s mental workload change at 
subtask boundaries? How much does this change differ 
for boundaries at different levels in a task model? 

• How much lower is a user’s mental workload at 
boundaries compared to the average mental workload 
during subtask execution (non-boundary) moments? 

• How can a user’s changing mental workload during task 
execution be effectively mapped to a computational index 
that systems can use to better reason about attention? 

Users and Equipment 
Twelve users (1 female) participated in the study. Users 
ranged from 23 to 50 years of age, with distribution 
(M=27.1, SD=7.45). All had normal or corrected-to-normal 
vision. Though we did not balance for gender, previous 
research has shown that gender does not influence a user’s 
pupillary response to mental workload [3]. Users were not 
compensated for their participation. 

We measured pupillary response using a head-mounted SR 
Inc. Eyelink II eye-tracking system with a sampling rate of 
250 HZ, a spatial resolution of 0.005 degrees, and accuracy 
to a hundredth of a millimeter. The study was conducted in 
a room where light and noise levels were well controlled. 

Tasks 
For the study, we developed two tasks – a route planning 
task and a document editing task. We designed the tasks to 
be comprised of meaningful subtasks of varying difficulty, 
to have a prescribed execution sequence, to have well 
defined boundaries among subtasks, and to provide a 
representative sample of user interaction. 

Although a user does not typically follow a prescribed 
execution sequence when performing interactive tasks, the 
sequence had to be controlled to align changes in mental 
workload to task execution. The lower-level subtasks within 
the route planning and editing tasks are representative of 
those within many interactive tasks, e.g., selection, memory 
store and recall, data entry, reasoning, comprehension and 
processing, and motor movements. Each task required 
about 5 minutes to perform, which is considerably longer 

than tasks used in many prior studies, e.g., [5, 17, 21, 22, 
35]. This resulted in about 3,000 data points for each task. 

In each task, we varied the mental workload among some 
subtasks that were repeated to later validate that changes in 
mental workload caused changes in pupillary response.  

Route Planning Task 
In the Route Planning task (Figure 1a), a user was shown a 
map with two routes between two cities marked by 
differently colored stars. For each route, there were three 
segments from the source to the destination. A distance and 
fare were associated with each segment, and were available 
through a tooltip balloon that appeared when the user 
moved the mouse over a route segment. 

To perform the task, the user moved the mouse over a route 
segment in the map, committed the distance and fare 
information that appeared in the tooltip to memory, and 
entered the data into the corresponding row in the table. 
When the user moved the mouse away from the segment, 
the tooltip disappeared. The user completed each of the 
three rows in the table and then mentally added the distance 
and fare columns and entered the results into the fourth row. 
The user then repeated the process for the second table and 
route. After completing the tables, the user selected the 
shorter and the cheaper of the two routes from drop down 
lists, shown near the bottom of Figure 1a. 

The main cognitive subtasks were storing information from 
the map to working memory (Store), recalling information 
for the table (Recall), and adding the numbers (Reasoning). 
Comparing distance and fare totals and deciding the shorter 
and cheaper routes also involved reasoning processes.  

To vary mental workload, we varied the memory load of the 
distance and fare information. For easier subtasks, whole 
numbers were used, e.g. ‘80’, while for more difficult 
subtasks, we used numbers with more digits (e.g. ‘147.53’) 
and that required carries in the add computations. 

Document Editing Task 
In the Document Editing task (Fig. 1b), a user was given a 
document annotated (highlighted) with three comments that 

Figure 1a: The interactive route planning task. A user 
retrieves distance and fare information from the map, enters it 
into the tables on the left, adds the distances and fares, and 
selects the cheaper and the shorter of the two routes. 

Figure 1b: The document editing task. A user edits the 
document based on the given comments. Once edited, a user 
saves the document to a specified location and file name. 
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varied in the complexity of the edit required. The document 
text was about the social hierarchy of a common household 
pet (cats). This topic was selected because we felt it would 
be interesting, familiar, and understandable to most users. 

The user was instructed to edit the document according to 
each comment, which appeared as a tooltip when the user 
moved the mouse over the corresponding highlight. After 
reading a comment, the user located the text, made the 
appropriate edit, and repeated two more times. Once edited, 
the user saved the document to a specified directory with a 
specified file name, both were provided beforehand. 

The main cognitive subtasks were understanding comments 
and the document text (Language Comprehension), making 
edits (Language Processing), and recalling the directory and 
file name (Recall). To vary mental workload, we varied the 
complexity of the required edits. The easy edit was to 
correct one misspelled word. The medium edit was to locate 
and correct two misspelled words. The difficult edit was to 
rephrase a sentence so that it was grammatically correct. 

Procedure 
Upon arrival at the lab, a user filled out a consent form, a 
questionnaire for background information, and received 
instructions for the tasks. After questions were answered, 
we set up the eye-tracker and calibrated the system. At the 
start of the session, the user was given specific instructions 
and performed practice tasks. Just before each experimental 
task, we collected baseline pupil size by having the user 
relax and fixate on a blank screen for about 10 seconds. The 
user then performed the experimental task and was 
instructed to perform the task as quickly and as accurately 

as possible. The ordering of the tasks was counterbalanced. 
Pupil and eye movement data were logged to time stamped 
files. We video recorded a user’s screen interaction for later 
analysis. Because the videos and pupil data received time 
stamps from the same clock, we could precisely align them. 
The user required about 5 minutes to perform each task and 
the entire experimental session lasted about 30 minutes. 

Task Models and Validation 
We performed a GOMS analysis to decompose each task 
into its component subtasks. In GOMS terminology [6], we 
started with the root goal, for example, to perform the 
Route Planning task, and then recursively decomposed the 
root goal into its component subgoals and operators. The 
decomposition continued until there was no observable or 
meaningful separation between operators. 

Figure 2 shows the task model for the Route Planning task, 
reusing repetitive parts for brevity. The full task model has 
4 levels and 81 nodes. The leaves of the model represent 
operators, the interior nodes represent subgoals, and the 
root represents the main task goal. The term subtask refers 
to any node in the task model. The term subtask boundary 
refers to the period between execution of consecutive 
subtasks. We define level of boundary between two 
consecutive subtasks to be 1 + the depth of their shared 
ancestor subtask in the model. For example, in Figure 2, 
consider the “Locate seg in map” and “Store data” subtasks 
at the left of level 4. When a user completes the “Locate seg 
in map” subtask and moves to the “Store data” subtask, this 
defines a level 4 boundary, since the depth of their shared 
ancestor (“Retrieve segment”) is (1 +) 3. When a user 
completes the “Store data” subtask and moves to the 

Figure 2: Validated GOMS model of the route planning task. The interior nodes represent goal nodes, the leaf nodes represent 
operators, and time moves from left to right. Regions A, B and C show parts of the task repeated elsewhere in the model. Within each 
subtask, we provide the [beginning PCPS, average PCPS, last PCPS] for that subtask. Each shaded area between subtasks indicates a 
boundary and contains the [minimum PCPS, average PCPS] across the boundary. The example level 3 boundary shows that the 
APCPS drops from 15.1 during the preceding subtask to a minimum of 13.9 within the boundary. The example level 1 boundary shows 
that the APCPS drops from 13.6 during the preceding subtask to a minimum of 8.7 within the boundary.  
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“Recall” subtask, this defines a level 3 boundary, since the 
depth of their shared ancestor subtask (“Enter data for seg 
1”) is (1 +) 2. Finally, subtask type refers to whether a 
subtask represents a store, recall, reasoning, language 
comprehension, language processing, or motor operator. 

The GOMS models were developed in an iterative manner. 
For each task, we developed an initial GOMS model 
through our own analysis of its execution. Once defined, 
eight people who did not participate in the user study were 
asked to view a video of the expected task execution and 
identify an observable sequence of operators. This video 
was recorded prior to and independent from the user study. 
We compared the identified operator sequences to the 
leaves of our task model and refined it as necessary.  

We validated our final model by comparing the interaction 
videos from the user study to the model. The number of 
error steps each user performed was counted. An error step 
was defined to be a deviation from the prescribed operator 
sequence. If the user committed an error, each action after 
that step would also count as an error until the user again 
performed a step in the prescribed sequence, from which 
point the analysis continued. The average error rate for the 
Route Planning task was 2.81%, ranging from 0% to 
5.66%, which is consistent with models validated in [6].  

We repeated this procedure for the Document Editing task. 
The task model for this task had 5 levels and 41 nodes. The 
average error rate was 2.3%, ranging from 0% to 13.6%.  

The GOMS models accurately reflect a user’s execution of 
the tasks and enabled us to precisely align a user’s pupillary 
response to the models. This was very challenging because 
each user performed the tasks at different speeds. Thus, we 
had to align the pupil data by meticulously synchronizing it 
to specific event points in each task model. 

Measurements 
To measure changes in mental workload, we calculated the 
percentage change in pupil size, referred to as PCPS. This 
value was calculated by subtracting the baseline pupil size 
from each measured pupil size and then dividing the result 
by the baseline. We use PCPS to minimize the pupillary 
response differences among individual users, which is 
consistent with prior work [3]. The term APCPS refers to 
the average PCPS over a subtask’s time window. The time 
window varied according to the type and level of a subtask 
and ranged from about 24 msecs for the lower-level 
subtasks to about 63 seconds for the higher-level subtasks. 

RESULTS 
In this section, we first validate that changes in mental 
workload caused changes in pupillary response. Then, for 
both experimental tasks, we discuss how much mental 
workload different types of subtasks induce on a user, how 
much a user’s mental workload changes at subtask 
boundaries, and how much a user’s mental workload differs 
between subtask execution and subtask boundaries. 

The reader should keep in mind that small changes in 
pupillary response represent meaningful changes in a user’s 
mental workload and that there is an upper bound on how 
much a user’s pupil will increase due solely to the effects of 
increased mental workload. 

Validation of Pupillary Response to Mental Workload 
To validate that changes in mental workload caused 
changes in pupillary response, we compared pupillary 
response among the subtasks for which workload was 
manipulated. For route planning, we performed a one-way 
ANOVA with Load (fewest, middle, and most digits) as the 
factor on the PCPS of recall subtasks. Results showed that 
Load had a main effect on APCPS (F(2,72)=17.363, 
p<0.028), with higher load subtasks having a higher APCPS 
than lower load subtasks. For document editing, an 
ANOVA with Complexity (simple, medium, and difficult) 
as the factor on the edit subtasks showed that more difficult 
edits had higher APCPS than easier edits (F(2,22)=3.404, 
p<0.05). These results validate that changes in mental 
workload did cause changes in pupillary response. 

Route Planning Task 
Figure 3 shows the mean APCPS of the subtasks for the 
route planning task. Time moves from left to right and the 
vertical lines represent first and second level boundaries 
from the task model in Fig. 2. The rise and fall of the curve 
shows changing mental workload during task execution. 

Mental workload during subtasks 
To validate that cognitive subtasks induced increased 
mental workload on a user, we performed a one-sample t-
test on the APCPS for the Store, Recall, and Reasoning 
subtasks. We found that the APCPS was greater than 0 
across subtasks (M=12.7, SD=7.3, t(263)=28.25, p<0.001), 

Figure 3: APCPS for the subtasks in the route planning task. 
Solid lines indicate level 1 boundaries and dashed lines 
indicate level 2 boundaries. The x-axis enumerates level 3 
subtasks. Notice how the graph dips lower at level 1 
boundaries than at level 2 boundaries – showing how mental 
workload decreases more at boundaries higher in the model.  
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and the standardized effect size index d was 1.7, a high 
value. This represents a 12.7% increase over the baseline 
and shows that subtasks did impose increased workload on 
a user. We only used cognitive subtasks in our analysis 
since the relationship between cognitive effort and pupillary 
response is the one best established by prior work [3]. 

A one-way ANOVA with Subtask as the factor showed a 
main effect on APCPS (F(2,261)=3.247, p<0.04). Post hoc 
tests showed that Reasoning induced more mental workload 
than Store (difference was 3.4 percentage points, with 
p<0.037). This shows that certain subtasks (Reasoning) 
induce more mental workload than others (Store) while 
other subtasks induce similar workload (Store and Recall).  

A one-way ANOVA with Level as the factor showed a main 
effect on APCPS (F(1,262)=3.898, p<0.049). Because the 
subtasks used in this comparison are the operators in the 
task model, each subtask existed at either level 3 or 4. 
Subtasks at level 3 had a higher APCPS than at level 4 
(difference was 2.3 percentage points). This difference may 
be attributed to the cognitive demands of the subtasks rather 
than their level as level 3 contained all the reasoning (more 
cognitively demanding) subtasks. Our results show that 
subtasks induce increased mental workload and different 
types of subtasks induce different workload on a user. 

Mental workload at subtask boundaries 
We define a subtask boundary to span the time from the last 
observable operator in a subtask to the first observable 
operator in the subsequent subtask, see Figure 4. There was 
a clear boundary between consecutive subtasks at each level 
in the task model. For each boundary, we computed the 
Boundary Decrease by subtracting the minimum PCPS 
(taken as the average of 3 values around the minimum to 
ensure support) within the boundary from the PCPS at the 

last observable operator in the preceding subtask (again, 
taken as the average of the 3 surrounding values) - just 
before the boundary occurred. Thus, a positive change in 
Boundary Decrease reflects a decrease in mental workload. 

A one-sample t-test showed that Boundary Decrease was 
greater than 0 across all subtasks (M=0.23, SD=2.17, 
t(611)=2.67, p<0.008). The standardized effect size index d 
was 0.1. This shows that mental workload decreases at a 
subtask boundary, but the decrease is small on average. 

One reason for the small effect size was that the lowest 
level boundaries showed little or no decrease in PCPS. 
PCPS likely did not decrease at these boundaries because 
the adjacent subtasks were short (about 200 msec), rapid, 
and closely related. We reran the one sample t-test for 
Boundary Decrease, but excluded level 4 samples. Results 
showed a stronger effect (M=0.54, SD=2.15, t(395)=4.995, 
p<0.001), with an improved d of 0.25. As level 3 and then 
level 2 samples are removed, results show increasingly 
stronger effects. This implies that changes in workload are 
meaningful down to the level of boundary just above the 
elementary operators in a task model. 

A one-way ANOVA showed that Level had a main effect 
on Boundary Decrease (F(3,608)=8.037, p<0.001). Post 
hoc analysis showed that Boundary Decrease at level 2 was 
greater than at level 4 (difference was about one percentage 
point, p<0.001) and that Boundary Decrease at level 3 was 
greater than at level 4 (difference was about 0.8 percentage 
points, p<0.001). This along with the previous result shows 
that workload decreases more at higher level boundaries in 
a task model and less at lower level boundaries in the model 
(see Fig. 3). A plausible interpretation is that a user releases 
more cognitive resources when completing the final subtask 
of a larger goal chunk (higher in the model) than when 
completing the final subtask of a smaller goal chunk [30]. 

Although the trends in the means were in the expected 
direction, Boundary Decrease at level 1did not significantly 
differ from other levels. This may be due to the fact that 
level 1 boundaries had fewer sample points than the other 
levels - the task model is wider at the lower levels than at 
the higher levels - resulting in larger variance and limiting 
the power of the statistical test involving level 1 boundaries. 

Mental workload during subtasks vs. subtask boundaries 
In the prior analysis, we computed Boundary Decrease by 
subtracting the minimum PCPS during a subtask boundary 
from the last PCPS in the preceding subtask. From the 
pupillary response curve, we observed that the decrease in 
mental workload at a subtask boundary actually started just 
before the last measure in the preceding subtask. This is 
likely because the cognitive and motor systems may execute 
in parallel [20], but with cognitive function preceding 
motor function. To further investigate, we tested how the 
minimum PCPS at a boundary compared to the APCPS 
over the execution of the preceding subtask.  

  

 

BoundarySubtask 1 Subtask 2

APCPS

PCPS of last observable
operator in subtask 1

PCPS of first
observable operator
in subtask 2Minimum PCPS

for boundary

Boundary Decrease

APCPS(Task) 
    - MinPCPS(Boundary)

Time

P
C

P
S

 (
%

)

Figure 4: Illustration of metrics used in the analysis. The 
vertical dashed lines mark the last observable operator in 
subtask 1 and the first observable operator in subtask 2 (taken 
as the average of the three surrounding values) and define the 
boundary between the two subtasks. Our analysis compared 
the differences between the minimum PCPS at a boundary and 
both the PCPS of the last observable operator of its preceding 
subtask and the APCPS of its preceding subtask.  
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A paired samples t-test for each pair of minimum PCPS 
within a subtask boundary and the APCPS of its preceding 
subtask execution showed that the pairs differed (M=0.28, 
SD=3.43, t(611)=1.995, p<0.047), with PCPS at the 
boundary being less than the APCPS during subtask 
execution. The standardized effect size d was 0.08. Similar 
to the previous section, we found that the small effect size 
was partly due to lower level pairs not differing as much as 
higher level pairs. Excluding level 4 pairs, for example, the 
same test shows a larger difference among paired samples 
(M=0.97, SD=3.57, t(395)=5.4, p<0.001). The effect size d 
was 0.3, showing a marked improvement. 

A one-way ANOVA showed that Level had a main effect 
on the paired samples (F(3,608)=19.677, p<0.001). Post 
hoc tests showed that differences at level 1 were marginally 
greater than level 2 (about 1.9 percentage points, p<0.056), 
were greater than at level 3 (about 2.13 percentage points, 
p<0.014) and were greater than at level 4 (about 3.9 
percentage points, p<0.001). Differences at level 2 were 
greater than at level 4 (about 2 percentage points, p<0.001) 
and differences at level 3 were greater than at level 4 (about 
2 percentage points, p<0.001). This and the previous result 
further shows that workload decreases more at boundaries 
higher in a model and less at boundaries lower in the model. 

We not only found that workload changed between levels in 
the task model, but also that workload changed within the 
same level in the task model. For example, the APCPS over 
the level 1 boundaries differed (t(14)=4.23, p<.001) with a 
maximum difference of about 3 percentage points. We also 
found that the APCPS among level 2 boundaries differed 
(F(3,33)=3.582, p<0.024) with a maximum difference of 
about five percentage points. 

Document Editing Task 
Figure 5 shows the mean APCPS of the subtasks for the 
document editing task, analogous to Figure 3. 

Mental workload during subtasks 
We performed a one sample t-test for the APCPS induced 
by the Language Comprehension, Language Processing and 
Recall subtasks. These were the observable subtasks and 
existed only at Levels 2, 3 and 5. APCPS was greater than 0 
across subtasks (M=6.72, SD=6.47, t(299)=17.98, p<0.001) 
with a standardized effect size d=1.0, a high value. This 
shows a 6.72% increase over the baseline level, meaning 
that subtasks did induce mental workload on a user, but not 
as much as in the route planning task. 

An ANOVA with Subtask (Comprehension, Processing, 
and Recall) as the factor showed a main effect on APCPS 
(F(2,129)=11.06, p<0.001). Recall induced more workload 
than Comprehension (difference was 6.1, with p<0.001) and 
Processing (difference was 3.7, with p<0.036). Processing 
had a higher APCPS than Comprehension (difference was 
2.3), but was not significant. These results are consistent 
with the Route Planning task, where different types of 
subtasks also induced different workload on a user. 

An ANOVA with Level as the factor showed a main effect 
on APCPS (F(2,297)=14.17, p<0.001). Subtasks at levels 2 
and 3 induced more workload than at level 5 (difference 
was 5.4 and 3.7, with p<0.01 and p<0.001, respectively). 
Subtasks at levels 2 and 3 are Recall, while those at level 5 
are Processing and Comprehension, thus this difference 
may be due to the Type rather than the Level of subtasks. 

Mental workload at subtask boundaries 
A one-sample t-test showed that Boundary Decrease was 
greater than 0 across all subtasks (M=0.81, SD=1.93, 
t(299)=7.271, p<0.001) with an effect size d=0.42. Level 
(1-5) had a main effect on Boundary Decrease (F(4, 295)= 
8.043, p<0.001). Post hoc tests showed that Boundary 
Decrease at level 1 was greater than level 3 (p<0.013) and 
level 5 (p<0.004). Boundary Decrease at level 2 was greater 
than level 3 (p<0.001), level 4 (p<0.033) and level 5 
(p<0.001). This shows that mental workload decreases 
more at boundaries higher in a model and less at boundaries 
lower in the model, consistent with the Route Planning task. 

Mental workload during subtasks vs. subtask boundaries 
A paired samples t-test for each pair of minimum PCPS 
within a subtask boundary and the APCPS of its preceding 
subtask execution showed no difference (M= -0.103%, 
SD=3.88%, t(299)= -0.461, p<0.645). As before, there 
were few and only very small decreases at the lowest level 
boundaries. Excluding levels 4 and 5 pairs, for example, 
analysis now showed a difference among the pairs (M=1.1, 
SD=4.1, t(155)=3.343, p<0.001) with an effect size d=0.27.  

An ANOVA showed that Level had a main effect on the 
paired samples (F(2,153)=3.502, p<0.033). Differences at 
level 1 were greater than at level 3 (about 2.5 percentage 
points, p<0.027). Differences at level 1 tended to be greater 
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enumerates the observable operators. 
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than level 2 (about 1.92 percentage points) and differences 
at level 2 tended to be greater than at level 3 (about 0.54 
percentage points), although significance was not reached. 
Combined with the previous result, this offers further 
support that workload decreases more at boundaries higher 
in a task model and less at boundaries lower in the model.  

FINDINGS 
From the user study, we found that: 

• Different types of subtasks impose different workload on 
a user. Our results show that some types of subtasks 
induce more workload than others. For the route planning 
task, for example, the Reasoning subtasks induced more 
workload than the Store or Recall subtasks. For the 
document editing task, Language Processing subtasks 
induced more workload than Comprehension subtasks. 

• Mental workload decreases at subtask boundaries. We 
compared the minimum PCPS at a subtask boundary to 
both the last PCPS measure in the preceding subtask as 
well as to the APCPS over the execution of the preceding 
subtask. From both perspectives, we found that a user’s 
mental workload decreased at a subtask boundary. 

• Mental workload decreases more at boundaries higher in 
a task model and less at boundaries lower in the model. 
We compared the minimum PCPS at a subtask boundary 
to both the last PCPS and the APCPS of the preceding 
subtask across levels of a task model. In both cases, the 
difference between pairs was greater at boundaries higher 
in a model and smaller at boundaries lower in the model. 
Our results provide the first evidence demonstrating this 
effect. Existing eye tracking systems can reliably measure 
changes at higher levels and many changes at lower 
levels of a task model. Advances in technology will 
continue to provide more precise measures of pupil size.  

• Mental workload changes among subtask boundaries 
within the same level of a task model. We compared 
APCPS among subtask boundaries within the same levels 
of the task model. For example, for levels 1 and 2 of the 
route planning task, we found that the change in 
workload differed within the level. Our results show that 
a system could use a task model alone to roughly infer 
where a user’s mental workload may change during task 
execution. Our results empirically demonstrate, however, 
that a system requires a measure of mental workload to 
understand how much a user’s mental workload changes 
at those points. Knowing how much a user’s mental 
workload will change should enable a system to make 
better decisions about when to interrupt the user. 

• Effective understanding of why changes in mental 
workload occur requires that the measure be tightly 
coupled to a validated task model. To make better sense 
of user’s pupillary response, we validated task models 
and then overlaid the models onto the pupillary response 
curve, as exemplified in Figures 3 and 5. Our research 
method would be useful for interface designers seeking to 

use mental workload (pupil size) to evaluate alternative 
designs. By aligning pupillary response to validated task 
models, designers can better link periods of unacceptably 
high workload to specific tasks in an interface, and then 
target those tasks for re-design. 

Our findings have important implications for the design of a 
computational system - an attention manager - that reasons 
about when to interrupt a user. Because our results show 
that a user’s mental workload changes among subtasks and 
decreases at subtask boundaries, an attention manager can 
and should perform fine-grained temporal reasoning about 
when to interrupt a user engaged in a task. Deferring the 
delivery of information or its attentional cue - even for a 
few seconds - until a user shows a lower mental workload 
can help mitigate the disruptive effects of interruption. This 
is consistent with prior empirical results showing that fine-
grained temporal manipulation of an interruption can cause 
dramatic differences in task performance, error rate, and 
reported levels of frustration, annoyance, and anxiety [1, 2]. 

In a controlled environment, an attention manager could use 
pupillary response as a real-time measure of mental 
workload to learn on-the-fly how opportune different 
boundaries or other moments in a task are for interruption. 
In an environment where illumination cannot be controlled 
or where the use of eye tracking systems is not possible, an 
attention manager could use pre-defined models of 
workload for known tasks. The models would be trained a 
priori in a controlled setting and then used by the attention 
manager for the same tasks in uncontrolled settings. 

TOWARDS AN INDEX OF OPPORTUNITY 
Because interpretation of raw PCPS data is difficult, we 
show how to map PCPS data onto an easily interpreted, 
configurable, and computationally convenient scale, called 
an Index of Opportunity (IOP). The IOP is an index that 
maps pupillary response to a discrete, 20-point scale that 
indicates how opportune a particular moment is for an 
interruption. On the scale, ‘1’ indicates the least opportune 
moment for an interruption while ‘20’ indicates the most 
opportune moment. Each successive bin is assumed to 
represent a meaningful decrease in mental workload, 
meaning that an interruption would result in less disruptive 
impact. In determining the number of bins for the IOP, we 
wanted the scale to be sensitive to changes in mental 
workload at subtask boundaries, yet not be so fine-grained 
that it became an uninformative replacement for raw PCPS. 

To make it more robust, the IOP was developed using 
PCPS data from both of our experimental tasks. To 
compute the number of bins, we divided the span of the 
95% range of values centered about the median (accounting 
for most of the PCPS data) by the lower end of the 95% CI 
for the average decrease in PCPS at a subtask boundary. 
This would make the index sensitive to most changes in 
PCPS at a subtask boundary. The span of the 95% range of 
values centered about the median was 30, ranging from [-4, 
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26]. The 95% CI for the average decrease in PCPS at a 
subtask boundary was 1.7±0.2. Using the lower end of the 
CI (~1.5), we divided the span, 30, by the average decrease, 
1.5, to give 20 bins. This is the minimum number of bins 
such that the index is still sensitive to most changes in 
PCPS at subtask boundaries. A PCPS value can thus be 
mapped to the IOP [1, 20] using the linear function: 

(1)… 11*19 +⎥
⎦

⎥
⎢
⎣

⎢
⎥⎦
⎤

⎢⎣
⎡

−
−−=

baselinehighest

baselinecurrent

PCPSPCPS

PCPSPCPS
IOP  

Because results from our study showed that different users 
had different changes in PCPS, i.e., there was an effect of 
Subject, one can manipulate the high and baseline values in 
the mapping to configure it for specific users and tasks. 
This can be achieved by analyzing a specific user’s PCPS 
for several tasks over a period of time. This would be most 
appropriate in a domain where a user performs critical tasks 
under different workload conditions, e.g., air traffic control. 

We judged the quality of the mapping by its ability to 
produce a near-normal distribution of IOP values. Figure 6 
shows a histogram of IOP values mapped from the pooled 
PCPS data. It shows that the mapping does indeed produce 
a near-normal distribution (skewness=-0.347, kurtosis=-
0.448) and intuitively reflects that a user is more often in 
the middle of the IOP scale than at either end of it. 

Although our mapping fits the data well, further research is 
needed to precisely determine the PCPS endpoints for each 
bin in the IOP and to validate that each successive bin 
causes less disruption. Our mapping, however, provides an 
important first step toward an index that is sensitive to 
meaningful changes in mental workload during task 
execution, which a less sensitive scale, e.g., a scale of ‘low’, 
‘medium’, and ‘high’, would otherwise miss. 

In an attention manager, the IOP can serve either as a direct 
measure of the cost of interruption or as part of a broader 
reasoning framework that considers additional dimensions 
such as cognitive resource conflicts between the primary 
and interrupting task, or the presentation style, urgency, or 
relevancy of an interruption. The IOP, for example, could 
serve as an evidence variable in a Bayesian network [14]. A 
system could also model temporal patterns of IOP values to 
develop a more robust sense of availability that is less 
sensitive to transitory changes in IOP. By utilizing mental 
workload, an attention manager can make more effective 
decisions about when to interrupt a user engaged in a task. 

FUTURE WORK 
For future work, we intend to: 

• Validate a mapping from PCPS to a scale of disruption 
for interruption. Our IOP transforms ranges of PCPS into 
distinct categories, assuming that successive categories 
have successively lower costs of interruption. To refine 
and validate the mapping, we want to conduct user 
studies where we manipulate workload using different 
tasks, interrupt a user, and measure the disruptive impact 
using performance, physiological responses, and 
subjective ratings. From the results, we can refine the 
IOP to better reflect a scale of disruption. 

• Develop a tool that better supports analysis of pupillary 
response data for interactive tasks. Software packages 
that ship with commercial eye trackers fall far short of 
what researchers need to analyze pupillary response data 
for interactive tasks. The software does not provide a 
tightly synchronized view among the user task model, 
video of onscreen interaction, and pupillary response. As 
a result, analysis of the data required tedious labor and 
complex macro writing. Tools that better support the 
analysis process could save researchers enormous effort. 

• Use mental workload to further measure the effects of 
interruptions. The effects of interruptions are typically 
measured using external measures such as task time, error 
rate, and subjective ratings. By using pupil size to 
measure changes in mental workload due to interruptions, 
we may further measure their disruptive effects. 

CONCLUSION 
To contribute to systems that reason about human attention, 
our work empirically demonstrates how a user’s mental 
workload changes during task execution. Results show that 
mental workload decreases at subtask boundaries and 
decreases more at boundaries higher in a task model and 
less at boundaries lower in the model. This contributes 
further theoretical understanding of how workload changes 
during task execution, and helps systems identify more 
appropriate moments for interruption. Also, by leveraging 
our research method of aligning pupillary response to 
validated task models, designers can better link periods of 
unacceptably high workload to specific tasks in an interface 
and target them for re-design. We show how to map mental 
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Figure 6: Histogram of IOP values mapped from Equation 1 
using PCPS data from both tasks. The distribution is near 
normal and users were more often in the middle than at 
either end of the scale. Each PCPS count is a 100ms sample. 
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workload onto a computational index that is sensitive to 
changes in workload at subtask boundaries. By using the 
index in a broader reasoning framework, systems can make 
more effective decisions about when to interrupt users. 
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