
Extending Traces with OAT1: an Object Attribute Trace package for
Tcl/Tk2

Alex Safonov, Joseph A. Konstan, John V. Carlis and Brian Bailey
Department of Computer Science

University of Minnesota
{safonov,konstan,carlis,bailey}@cs.umn.edu

1 One of the reviewers suggested that we come up with a different name for the OAT package, so we renamed
our package FATCAT: Flexible Architecture for Tcl Constraints And Traces.
2 Partially supported by NSF grants EBN-9419233 and IRI-9410470, and a grant from the Minnesota Distrib-
uted Multimedia Research Center.

Abstract

Tcl supports variable traces, which associate arbitrary
scripts with variable reads, writes and unsets. We
developed OAT (Object Attribute Traces), a protocol
for extending traces to attributes of arbitrary Tcl
“objects.” We wrote several OAT-based extensions
including TkOAT, which provides traces on attributes
of Tk widgets and canvas items. The OAT protocol
and derived extensions bring the benefits of more
expressive constraints to Tcl/Tk applications by pro-
viding extended traces. OAT requires no changes to
the Tcl core and is implemented as a loadable library;
OAT-based extended trace packages introduce mini-
mal changes to the code of existing extensions (Tk,
CMT, etc.). The new version of our formula manager,
TclProp, takes advantage of extended traces provided
by OAT.

1. Introduction

Tcl’s trace mechanism allows the Tcl script pro-
grammer to specify arbitrary scripts to be executed
when a given variable is read, written, or unset. It
provides, among other things, a good means for
propagating changes to variables [Sah95]. For in-
stance, Tcl uses traces internally for the following:

• tracking changes to the tcl_precision
variable, to update the floating-point preci-
sion and printing format in the interpreter.

• monitoring the env array to propagate
changes to the corresponding environment
variables.

• supporting linked Tcl and C variables.
• implementing the vwait command.

The built-in trace mechanism is limited to variables
only. This limitation becomes significant, for in-

stance, when one attempts to use traces and formulas
with UI widgets. It is often desirable to detect
changes to the state of Tk widgets, or to link widget
attributes with formulas. Because many attributes of
Tk widgets are not associated with variables, they are
not traceable. Examples of such widget attributes
include:

• button state, normal or disabled
• state of a menu item, normal or disabled
• button or label color and bitmap
• the number of items in a listbox

We propose OAT, a generic protocol for extending
Tcl traces. We target two types of users: Tcl script
programmers and Tcl extension developers. Script
programmers will benefit from the OAT-based ex-
tended traces, because the trace-based Tcl code is
more compact and easier to maintain. Extension de-
velopers can use OAT to make their objects traceable,
to bring the benefits of declarative trace-based pro-
gramming to users of their extensions. We discuss our
experience of making Tk widgets and CMT clocks
traceable. Finally, we describe the OAT implementa-
tion.

2. Extended traces

The Listbox Pager shown in Figure 1 demonstrates
the usefulness of traces set directly on widget attrib-
utes. The “Prev Page” and “Next Page” buttons scroll
the contents of the listbox by the number of visible
lines. They are disabled when the listbox is posi-
tioned on the last page (starting at item 5) and the
first page (starting at item 0), respectively. The state
of the pager buttons depends on the following three
attributes of the listbox:

1. the total number of items
2. the number of visible items
3. the number of the first visible item

Figure 1. A listbox pager using extended traces: first and last pages

Updates to these three listbox attributes can be scat-
tered throughout the script code and widget callbacks.
Without extended traces, these updates must be fol-
lowed by the code that enables and disables the “Prev
Page” and “Next Page” buttons. With traces on the
listbox attributes available, the Tcl programmer only
needs to specify the code to set the state of the pager
button once, in the trace callback. The working code
in Figure 2 creates the extended traces on listbox at-
tributes, and defines a procedure to check whether the
listbox is on the last page, and to enable or disable the
buttons accordingly. The trace callback that controls
the state of the “Prev Page” button is similar. Since
listbox attributes are not traceable in stock Tk and no
variables are associated with them, this example

demonstrates the need for extended traces for UI de-
velopment.

Extended traces are useful for canvas item "geometry
management". Suppose we would like to keep a can-
vas rectangle twice the size of another one as the lat-
ter is resized. We create the trace on the coords
attribute of the source rectangle, and associate with it
the code to resize the target rectangle. Similarly, the
trace on canvas item coords can maintain its width-
to-height ratio constant, ensuring, for instance, that a
rectangle remains square.

Extended traces on canvas attributes also help to
maintain geometric relationships among them. For
instance, graph drawing packages [Ellson96]

create extended traces on topIndex, numElements, and fullLines
attributes of listbox widget .lb
trace widget .lb topIndex w setNextPageState
trace widget .lb numElements w setNextPageState
trace widget .lb fullLines w setNextPageState

define trace callback
proc setNextPageState {nameSpace widgName attrName op} {

 set fraction2 [lindex [$widgName yview] 1]
 if {$fraction2 < 1} {
 .nextPage conf -state normal
 } else {
 .nextPage conf -state disabled
 }
}

Figure 2. Code for trace-based “Next Page” button

and programs for structured drawing benefit from the
ability to keep canvas items attached as they are
dragged. A line is attached to a circle by creating
traces on both line and circle coordinates3. The code
associated with the traces moves one item as the other
is dragged.

3. Traceable types and the OAT protocol

These examples and our experience with Tcl/Tk de-
velopment motivated us to create a protocol for de-
fining traces on attributes of arbitrary Tcl “objects”
[Roseman95]. We call an object type enhanced to
support traces on its attributes a traceable type. Vari-
ables constitute a traceable type with only one
(implicit) attribute: their value. Other traceable types
we created are Tk widgets, Tk canvas items, CMT
clocks, and [incr Tcl] namespaced variables and ob-
jects (work on the latter is still in progress).

Our primary goals in the development of OAT were:
1. to define a clean protocol for easily adding traces

to new and existing extensions that employ the
concept of state-holding objects;

2. to extend the benefits of traces to arbitrary Tcl
objects.

3. to make OAT and OAT-based extensions easy to
integrate with existing Tcl/Tk installations.

As a proof of concept and for general use, we devel-
oped TkOAT, supporting traces on Tk widgets and
canvas attributes, and MediOAT, adding traces to
CMT clocks. We tried to conform as much as possi-
ble to the Tcl interface provided by the trace com-
mand, and internal C interfaces, since we found these
well-designed and implemented. To ease integration
of OAT and OAT-based extensions with Tcl/Tk in-
stallations, we created the extensions as loadable li-
braries, and made changes to the original code only
where it was absolutely necessary.

The OAT protocol consists of two parts:
• Tcl API, used by the Tcl script programmer. It

defines creation, querying, and deletion of ex-
tended traces on objects of traceable types from
Tcl code.

• C API, used by the Tcl extension developer. The
OAT C API defines a protocol for creating new
traceable types, and checking and triggering traces
on attributes of traceable type objects.

3 While the coordinates are not, strictly speaking,
configurable “attributes” of canvas items, for cases
like these it is desirable to treat them as such.

TclProp [Iyengar95], a trace-based formula manager
for Tcl, was updated to take advantage of extended
traces. The new TclProp API includes type identifi-
cation for objects whose attributes are terms in a for-
mula.

3.1 OAT Tcl API

The OAT Tcl API permits a programmer to manipu-
late extended traces from Tcl scripts. The interface is
modeled on variable traces. As with variables, each
traceable type has three subcommands for the trace
command: to create, query, and delete a trace. Code
in Figure 2 shows an example of creating traces on
attributes of listbox .lb; the “widget” keyword is
the trace creation subcommand for the Tk widget
traceable type. The general syntax of the extended
trace command, shown in Figure 3, is the same as in
stock Tcl. However, the “option” subcommand can be
a trace keyword for any of the registered traceable
types. The keywords for the subcommands are de-
fined when a traceable type is created, as discussed
below.

trace option ?arg arg ...?

Figure 3: The extended trace command syntax

A Tcl programmer can query OAT for all registered
traceable types; this is accomplished with the "oat"
command. It returns the names of all registered trace-
able types; the list always includes the built-in trace-
able type, variable. Suppose the TkOAT exten-
sion is loaded, providing traces on widget and canvas
attributes. The oat command will return the follow-
ing list: “variable widget citem.” Here
“widget” and “citem” are additional traceable
types registered by TkOAT. The “oat typename”
command returns the subcommand keywords for a
registered traceable type, where “typename” is a
name of a traceable type. The “oat widget”
command will return the trace subcommands for
traceable type widget: the list “widget winfo
wdelete.”

3.2 OAT C API

The traceable type creation protocol permits a writer
or a maintainer of a Tcl extension to define new
traceable types. The creation of a traceable type in-
volves three main steps:
• extend the trace command: the trace command

is extended to accept keywords for new sub-

commands that create, query, and delete traces
on this type.

• register the callback function: the OAT-
supplied or custom C callback is registered to be
called when these keywords are supplied with the
trace command.

• insert checks for traces: checks for traces are
inserted in the attribute update code for the trace-
able type.

Extend the trace command. A traceable type can be
defined by the extension developer at different levels
of detail. At a minimum, the name of the new trace-
able type must be supplied. The OAT library will
automatically generate the subcommand keywords for
the trace command from the type name. For instance,
if “gadget” is specified as a traceable type name,
the keywords to create, query, and delete traces on it
will be “gadget” , “gadgetinfo” , and
“gadgetdelete” , respectively. If desired, these
three keywords can be explicitly specified. As an ex-
ample, Tk widgets form a traceable type with trace
subcommands “widget,” “winfo,” and
“wdelete.” . Figure 4 shows the OAT traceable
type data structure, along with field names, types, and
brief content descriptions.

Register the callback function. The developer can
use the standard OAT-supplied callback for trace
subcommands, or write a custom one. The first
approach significantly simplifies creating a traceable
type. The extension developer should use the OAT-
supplied callback if all extension objects are "global"
like Tk widgets, that is, are not contained within a
namespace.

Object systems can require additional information to
identify an object being traced. For example, traces
on canvas item attributes require both a canvas name
and an item tag or id to uniquely identify the traced
attribute. To support this behavior, OAT allows the
extension developer to specify a custom C function
that is called when the Tcl interpreter processes the
trace subcommands for this type. The prototype for
the OAT custom trace callback is shown on Figure 5.
We are investigating how to make OAT-supplied
trace callbacks more general so that they accommo-
date objects with namespaces.

Insert checks for traces. The extension developer
needs to insert the check for traces in the C code
where extension object attributes are updated. This
check is done in a single line of code, as shown on
Figure6.

Field Name Field Type Comment
typeName char* traceable type name
traceCreate char* keyword for trace command
traceInfo char* keyword for trace command
traceDelete char* keyword for trace command
traceCmdProc function

pointer
function to call when trace subcommand for this type is
supplied, or NULL (use default callback function)

Figure 4: A traceable type data structure

typedef int (Oat_CmdProc) (ClientData dummy,
 Tcl_Interp* interp,

 int argc, char* argv[]);

Figure 5. Type definition for the custom OAT trace callback.

/* Call traces for widget or canvas item attribute being configured. */
Oat_CallObjTraces(interp, objRec, specPtr->argvName, TCL_TRACE_WRITES);

Figure 6. Adding check for extended traces to tkConfig.c

char* Oat_CallObjTraces (
Tcl_Interp* interp, /* current interpreter */

 char* objPtr, /* pointer to object data structure */
 char* attrName, /* attribute name */
 int flags); /* currently TCL_TRACE_WRITES only */

Figure 7. Prototype for the OAT function that checks and triggers traces

For Tk widget and canvas item traces, which share
the code to update attributes, the call to
Oat_CallObjTraces() is inserted at the end of
DoConfig(). This is the only place where the core
code needs to be modified to support widget attribute
traces in Tk. Figure 7 shows the prototype for func-
tion Oat_CallObjTraces() that specifies what
information uniquely identifies the object and the
attribute.

When the trace command is used in a Tcl script, the
OAT code searches for the supplied subcommand
keyword in the table of registered traceable types.
When a matching keyword is found, a standard or
custom function to manipulate a trace is executed. If
the keyword does not match any of the registered
traceable types, the trace command returns an error.
This implementation supports traces on variables in a
uniform interface, since variables are defined as a
traceable type with subcommands “variable,”
“vinfo,” and “vdelete,” and with the Tcl-
supplied C callback, Tcl_TraceCmd() , that proc-
esses these subcommands.

4. MediOAT: a traceable type extension
for Continuous Media Toolkit

CMT [Rowe92], a multimedia toolkit from Berkeley,
has an object system similar to Tk widgets. Examples
of CMT objects are clocks, packet sources and desti-
nations, and media play objects. Unlike Tk, however,
the CMT object implementation does not use a single
ConfigureObject() function; instead, each type
of CMT objects parses its command options. For the
OAT implementation of extended traces, this means
that checks for traces need to be inserted in the attrib-
ute manipulation function for each type of CMT ob-
ject. Based on our experiences with CMT multimedia
applications, we decided that traces on clock attrib-
utes - speed and value - would be most useful. Traces
on clock attributes trigger code when the time in a
multimedia presentation “jumps”, stops, or starts to
move at a different rate. Our current version of Me-
diOAT supports traces on attributes of CMT clocks.
We wrote VCR control and jog shuttle control
megawidgets based on MediOAT. Figure 8 shows

GIF animation with VCR and jog shuttle controls.
The control buttons - stop, play, fast forward, reverse
- set the “-speed“ attribute of the shared CMT
clock. The trace callback, associated with clock speed
updates, highlights the VCR buttons appropriately.
The resulting code is compact; without traces, call-
back for each control button would have to know
what other buttons to highlight.

Figure 8. A MediOAT-based VCR controls (shown
stopped: stop button disabled)

trace lts $lts -speed w \
[list VCR_LTSChanged $id]

Figure 9. Creating a trace on a CMT clock; procedure
VCR_LTSChanged manipulates the VCR buttons

state.

5. OAT Implementation

Variable traces rely on special fields in the C struc-
ture describing a Tcl variable. This approach was not
possible in OAT, since object systems currently do
not reserve space for storing trace information. In Tk,
there is not even a single data structure common to all
widgets. We decided to use a hashtable associated

with the interpreter to hold trace information. The
hashtable string key consists of two components: the
memory pointer of the C data structure describing the
traced object, and the name of the attribute. To gen-
erate a string key, the binary pointer value is con-
verted into its hexadecimal string representation. Why
did we use the object pointer instead of name? Object
name is not always available when its attributes are
updated. To use the pointer for a part of the hashtable
key, we assume that each traceable object is repre-
sented as a data structure with a unique address. We
believe this assumption will hold as Tcl is upgraded
with new versions. When the dual-ported object sys-
tem was introduced in Tcl 8.0, we updated the OAT
code to use the pointer to the object, rather than the
string, representation in Tcl version 8 and above.

We did not observe performance degradation on trace
manipulations from the OAT protocol. To evaluate
the performance impact of OAT, we timed creation
and querying of variable traces in the following two
environments:
• original: Tcl7.6p2 with Jan Nijtmans’s plus-patch

[Nijtmans97], and Tk4.2p2 dynamically loaded
• OAT- and TkOAT-enhanced: Tcl7.6p2 with Jan

Nijtmans’s plus-patch, OAT, Tk4.2p2, and
TkOAT loaded.

Timings were generated on several UNIX platforms:
Solaris, Linux, and Irix. Both the original Tcl inter-
preter, and the interpreter with OAT and TkOAT
loaded, produced essentially the same timings. We
conclude that the lookup of additional trace keywords
in the OAT library code does not lead to any notice-
able performance degradation.

As we used OAT and TkOAT, we found it useful to
trace components of object state that are not config-
urable attributes. The Listbox Pager example in Fig-
ure 1 relies on traces on such “virtual” listbox attrib-
utes: the number of listbox items, the number of visi-
ble items, and the first visible item. We concluded
that supporting traces on these attributes was valuable
enough to make further modifications to Tk: insert
checks for traces in the listbox code. However, this
violated our goal of non-invasive Tk extension. We

hope that as traces and constraints are used more
widely in Tcl/Tk applications, more attributes of wid-
gets and objects will be “exported” by developers.
The Tcl programmer will be able to use traces on a
wider class of objects and attributes.

OAT was inspired by the variable traces in Tcl.
TkOAT was made feasible largely by a single loca-
tion in the Tk code where configurable widget and
canvas item attributes are set. While MediOAT dem-
onstrates that it is possible to insert OAT hooks in
any place where object attributes are potentially up-
dated, this defeats our goal of minimally invasive
code changes. We encourage all extension developers
who write object-like systems to adopt the Tk model,
where names and types of object attributes are de-
fined in a C data structure, and all attribute queries
and updates go through function similar to Tk’s
ConfigureWidget().

6. OAT and TclProp

While traces present a powerful abstraction for UI
programming, they can be inconveniently low-level to
be expressive. TclProp, a trace-based, script-only
formula manager and data propagation engine for Tcl
is described in [Iyengar95]. One of our goals in de-
veloping OAT was extending the benefits of TclProp
formulas to arbitrary Tcl objects. TclProp was re-
written to be accommodate formulas on new types of
objects. One main change to the TclProp API was the
addition of traceable type names in formulas - these
are needed to invoke the appropriate trace subcom-
mands inside TclProp. TclProp uses the “oat
typeName” command to retrieve the trace key-
words, as described above. To support extended
traces, TclProp also needs to know how to read and
write attributes of traceable types. We use a Tcl array
to associate traceable types with scripts that access
attributes of these types. For example, the read code
for the traceable type, Tk widget, is shown on Figure
10.

#the slot in the TP_traceableType array associates the traceable type
#name, widget, with the name of the procedure taking the names of a Tk
#widget and its attribute, and returning the code to read the value of
#this attribute.

set TP_traceableType(widget,read) "widgReadFunc"

proc widgReadFunc {widgName attrName} {
return "$widgName cget $attrName"

}

Figure 10. Extending TclProp to new traceable types: a Tk widget-specific attribute read procedure

TP_formula \
"citem .canv rect1 coords" \ # formula destination

 [list \ # list of formula sources
"rC [list citem .canv rect coords]"] \ # source 1

{list [expr [lindex $rC 0]+100] [lindex $rC 1] \ # formula code
[expr [lindex $rC 2]+100] [lindex $rC 3]}

Figure 11. TclProp formula with Tk canvas item attributes as formula destination and source. Comments are for
explanation only.

The Tcl interpreter evaluates procedure
“widgReadFunc” when a TclProp formula is cre-
ated, placing the code to read the value of the widget
attribute into the formula code. Since the procedure is
evaluated at formula creation time and not at formula
propagation time, no additional performance penalty
is incurred by the extension of TclProp to new trace-
able types.

Code for a TclProp formula typically accesses the
values of variables and object attributes that the for-
mula depends on. While variables reads in Tcl are
compact, code to read the values of object attributes
can be quite verbose. For example, to compute the
width of a canvas rectangle, the following expression
is needed:

{expr [lindex [.canv rect coords] 2] - \
 [lindex [.canv rect coords] 0]}

We enhanced TclProp formula syntax with tags to
support a more compact access to object attributes in
the formula code. Tags are associated with object
attributes on which the formula depends, and are re-
placed with the actual attribute read code in the for-
mula body. In the example above, if the tag “rC” is
specified for the “.canv rect coords” rectan-
gle attribute in the formula, the code above is simpli-
fied as follows:

{expr [lindex $rC 2] - [lindex $rC 0]}

The complete code for the TclProp formula ensuring
that canvas rectangle rect1 is offset by 100 pixels
in x relative to rect , is shown on Figure 11.

In our experience with OAT and TclProp, we found
the separation of trace detection and formula propa-
gation very useful. A propagation model different
from eager propagation model in TclProp can be built
on top of Tcl and OAT traces. We experimented with
several models, and implemented the lazy propaga-
tion alternative to TclProp, TclLazy, on top of OAT
in a few hours. In the lazy propagation, variables in
formulas are marked invalid on writes. A formula is
evaluated only when an up-to-date value of its left-
hand side is needed. The lazy model is appropriate
when writes significantly dominate reads. We believe
that the separation of traces and constraint propaga-
tion can be adopted in other scripting languages, such
as Perl, to provide easier development of constraint
engines.

7. Future Work

We use constraint programming and traces in our
Tcl/Tk development extensively [Safonov96], and
would like to see OAT and OAT-based extensions
more widely used. We plan to work in the following
four areas:
1. Make more types of extension objects trace-

able. We are currently considering adding traces
to CMT media segment objects; this will facili-

tate the development of CMT-based timeline
editors. We also plan to make objects traceable
in VTk, a Tk-based 3D graphics extension, and
GroupKit [Roseman96], a groupware for Tcl/Tk.

2. Make adding traceability to objects easier.
Currently, the extension developer needs to
modify code to insert checks for traces. While
these changes are minimal, recompilation is still
necessary. We plan to develop a protocol that
will allow extension developers to insert hooks
into the code that are later bound to the OAT
function Oat_CallObjTraces().

3. Add object-oriented features to OAT, based
on [incr Tcl]. We see benefits in initializing class
and object attributes to formulas rather than val-
ues, and in inheriting traces and constraints.

4. Investigate other languages and environments
for adding the trace protocol. We have consid-
ered Perl as the potential target for adding the
trace mechanism and trace-based constraint man-
ager.

References

[Ellson96] John Ellson and Stephen North. TclDG - a
Tcl Extension for Dynamic Graphs. In Proceedings of
the 4th Tcl/Tk Workshop, p. 37. USENIX Assoc; Ber-
keley, CA, 1996.

[Iyengar95] Sunanda Iyengar and Joseph A. Konstan.
TclProp: a data-propagation formula manager for Tcl

and Tk. In Proceedings of the 3rd Tcl/Tk Workshop, p.
288. USENIX Assoc; Berkeley, CA, 1995.

[Nijtmans97] Jan Nijtmans. The Plus-patches. In
http://www.cogsci.kun.nl/tkpvm/pluspatch.html

[Roseman95] Mark Roseman. When is an object not
an object? In Proceedings of the 3rd Tcl/Tk Work-
shop, p. 197. USENIX Assoc; Berkeley, CA, 1995.

[Roseman96] Mark Roseman and Saul Greenberg.
Building Real Time Groupware with GroupKit, a
Groupware Toolkit. ACM TOCHI, March 1996.

[Rowe92] Lawrence A. Rowe and Brian C. Smith. A
Continuous Media Player. In Network and Operating
System Support for Digital Audio and Video, Pro-
ceedings of the Third International Workshop on , p.
376-86, 1992.

[Safonov96] Alex Safonov, Douglas Perrin, John
Carlis, Joseph Konstan, John Riedl, and Robert Elde.
Lessons from the Neighborhood Viewer: A Tool for
Collaborative 3D Exploration of 2D Images. In Pro-
ceedings of the 4th Tcl/Tk Workshop, p. 203. USENIX
Assoc; Berkeley, CA, 1996.

[Sah95] Adam Sah. Multiple Trace Composition and
Its Uses. In Proceedings of the 3rd Tcl/Tk Workshop,
page 288. USENIX Assoc; Berkeley, CA, 1995.

