(© 2006 by Andrew McGovern. All rights reserved.

USING CURT FOR CURSOR AND KEYBOARD
REDIRECTION IN MULTI-DISPLAY ENVIRONMENTS

BY
ANDREW MCGOVERN

B.A., DePauw University, 2003

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science
in the Graduate College of the
University of Illinois at Urbana-Champaign, 2006

Urbana, Illinois

Abstract

Collaboration with multiple users and multiple machines in MDEs (multi-
display environments) is lacking today in several aspects. One such aspect
is that only one cursor can be present on a machine at a given time. If multiple
cursors, each controlled by a different user, could be present on a machine at
the same time, there would be potential for more productive collaboration be-
tween users. The fundamental problem is that current operating systems, such
as Microsoft Windows, are limited to one cursor on a screen at a time. CuRT
(Cursor Redirection Toolkit) provides a workaround to this, allowing multiple,
functional cursors, as well as multiple keyboards, to interact with one machine
simultaneously, with a few minor limitations. CuRT is not meant to be a fully
functional, standalone program to allow cursor and keyboard redirection; rather,
it is a toolkit that is intended to be used by developers of MDE systems who
wish to include cursor redirection as one collaborative component. CuRT was
intended to facilitate studies involving cursor/keyboard redirection in MDEs so
that someday, the presence of multiple cursors on a single machine might be

allowed at the operating system level.

iii

Table of Contents

List of Figures ¢ 0 i i i i i i i e e e e e e e e e vi
1 Imtroduction 1
2 Design Goals v v i it i i e e e e e e e 3
3 Related Work i 5
3.1 Large Screenso 5
3.2 Multiple Desktops and Multiple Display Environments (MDEs) . 5
3.3 “Reaching” with Large Displays 6
3.4 Creating Views into Application Windows 6
3.5 Application-Specific Collaboration 7
3.6 Imput Redirection o 7
3.7 Interfaces for Managing Applications in an MDE 8

4 Usage Scenarios v v v v v v v v v vt e 9
4.1 A Single User Giving a Presentation on a Large Display 9
4.2 Multiple Users Doing Early Sketching to Create a Prototype . . 10
4.3 Multiple Users Co-Writing a Paper 10
4.4 One Continuous Desktop Comprised of Multiple Desktops 10

5 CuRT Implementation 12
5.1 Development Environment and System Requirements. 13
5.2 Basic Functionality oL 13
5.2.1 Server/Client Architecture. 13

5.2.2 CuRT as a Standalone Application Versus CuRT as an API 15

5.2.3 Loading and Unloading the Hotkey 17

5.2.4 Mouse/Keyboard Hooks 17

5.2.5 The VirtualCursor Class and Its Subclasses 17

5.2.6 Network Message Codes 18

5.3 Extended Functionality 21
5.3.1 Cursor Update Resolution 21

v

5.3.2 Edge Detection L.

5.4 Notable Challenges
5.4.1 When to Recognize Input, and When to Block It
5.4.2 How Clicks and Drags Affect Other Cursors
5.4.3 Cursor Looping and Pixel Mapping

Future Work 00 i e e e e

6.1 Basic Features o L.

6.2 Extended features oL

Conclusiono i ittt

AppendixX . . . o 0L L e

8.1 CuRTClient Class Reference
8.1.1 Detailed Description
8.1.2 Constructor & Destructor Documentation
8.1.3 Public Method Documentation

8.2 CursorOnEdgeEventArgs Class Reference
8.2.1 Detailed Description
8.2.2 Public Member Variables
8.2.3 Constructor & Destructor Documentation

8.3 CursorOnEdgeListener Class Reference
8.3.1 Detailed Description

8.4 EdgeDetectionParams Class Reference
8.4.1 Detailed Description
8.4.2 Public Member Variables
8.4.3 Constructor & Destructor Documentation

References i i i e e

32
32
34

36

37
37
37
37
38
44
44
44
44
45
45
45
45
45
46

47

List of Figures

4.1

4.2

5.1

5.2

5.3

5.4

5.5

5.6

This is a photo of a user controlling a presentation on a large
screen using input redirection from his personal laptop.

This is photo of two users co-writing a paper on a shared public
display while doing research on their own personal laptops.

This diagram illustrates the CuRT server/client architecture. CS
= CuRTServer; CC = client communicator; SM = socket module;

11

CM = client module; dotted lines = UDP network communication 14

This diagram of the upper-left corner of the display illustrates the
cursor movement that takes place during speed detection. The
zone size in this case is 30 pixels, as indicated, and the minijump
size is 10, as indicated. Two 10-pixel minijumps are registered
within the zone in this example. If this is greater or equal to the
minijump threshold, then a speed detection event is triggered. . .

This diagram of the upper-left corner of the display illustrates the
cursor movement that takes place during loiter detection. In this
case, the cursor loiters along the top edge of the screen during
six coordinate changes. If this is greater or equal to the loiter
threshold, then a loiter detection event is triggered.

This diagram illustrates a virtual cursor click (on machine B, from
machine A) when the local cursor is present (on machine B). Note
that the letters on the cursors are simply labels representing the
machine that owns the cursor.

This diagram illustrates a virtual cursor click (on machine B, from
machine A) when the local cursor is remoted (on machine C).
Note that the letters on the cursors are simply labels representing
the machine that owns the cursor.

This diagram illustrates a local cursor click (on machine A). Note
that the letter on the cursor is simply a label representing the
machine that owns the cursor.

vi

24

Introduction

People have been collaborating on projects using multiple computers for
decades. The functionality provided to collaborate across machines, both in
software and in hardware, however, always seems to be several steps behind
what users would like to be able to do in a collaborative setting. To compen-
sate, users find ways to work around the limitations. For example, instead of
collaborating directly on a document, one user might email a copy of the docu-
ment to another user, allowing both users to collaborate on it in a turn-taking
fashion. Or one user might pass the mouse and keyboard to another user so that
they can both collaborate on the same version of the document at (almost) the
same time, but again in a turn-taking fashion. Each of these actions facilitates
collaboration, but they are both workarounds. One possible solution to these
workarounds is the MDE (multi-display environment). An MDE is a system
where multiple computers (which could be laptops, large screens, PDAs, table-
top displays, etc.) and multiple people are arranged in an environment that is
conducive to collaboration on a particular task or tasks. One basic collabora-
tive feature of MDEs that would aid in decreasing the need for workarounds
is that of cursor/keyboard redirection. Cursor/keyboard redirection is simply
the ability to redirect one’s cursor movements, clicks, drags, and key presses
from one machine to another, thus allowing the input devices on one machine
to directly control another. This has been implemented in a few systems, but
always in a one-to-one relationship. In other words, one machine sends its cur-
sor/keyboard input to one other machine, but the machine receiving the input
must necessarily disable the input of its local machine. This facilitates remote
control of a desktop, but it does not facilitate full collaboration. This one-to-
one input redirection limitation is due to the fact that at the operating system
level (in Microsoft Windows, for example), only one cursor device is allowed
on a machine at a time; this is one of the main limitations of the potential of
MDEs today. The CuRT (Cursor Redirection Toolkit) system provides a clean
workaround to this limitation, allowing multiple cursors to exist on and inter-
act with one single machine. The CuRT system is not a fully functional MDE
collaboration system, but rather a toolkit that allows other systems to include
arbitrary cursor/keyboard redirection as a collaborative feature. The many-to-
one relationship of input redirection offered by CuRT facilitates a higher level of
collaboration on a single machine. The cursor redirection offered by CuRT simu-

lates true many-to-one cursor redirection on a one-cursor operating system, and

as a result, it has a few limitations. For example, no two cursors can perform a
drag or open two different menus at the same time (see Section 5.4.2). Despite
this, the CuRT system does provide true functionality of multiple cursors on
the same screen at the same time, and social protocol is typically effective in
mediating the types of lower-level conflicts that may arise. This functionality,
despite its limitations, can lead to many interesting user studies related to this
type of collaboration. Depending on the results of these studies, there may be
a push in the future to include functionality for multiple cursors at the level of

the operating system.

Design Goals

The inspiration for this project arose out of a desire not only to create multi-
display environment (MDE) systems where multiple users can collaborate on
the same work at the same time, but also to set up controlled user studies to
determine just how people would best perform this collaboration, given that
they are provided with the appropriate tools. Of the possible tools that could
be used for collaboration in MDEs, cursor/keyboard redirection (i.e. allowing
cursor and keyboard input to be dynamically sent from one machine to another,
over a network, at runtime) is one of the most promising in terms of allowing

multiple users to truly collaborate on a common project.

Following are the primary design goals of CuRT.

e To set up and perform user studies involving cursor redirection, a com-
pletely flexible and customizable toolkit is needed. More important than
flexibility from the user’s standpoint, the toolkit should be flexible from
the developer’s standpoint. That way, tightly controlled experiments can
be set up to determine the MDE environments that will best support
collaboration, using cursor/keyboard redirection as an integral compo-
nent. The toolkit should function as a completely flexible API (Appli-
cation Programming Interface), where every possible action related to
cursor /keyboard redirection can be performed arbitrarily using method

calls.

e A system that manages MDEs clearly needs to enforce protocols about
which machines can send their input to which other machines, about how

the decision is made to do so, etc.

e The MDE system that encompasses input redirection needs to maintain

some type of spatial representation of the displays in the environment.

e The MDE system needs to determine how exactly a user goes about send-
ing his cursor/keyboard input to another machine, and how he retrieves

it later.

e The MDE system needs to determine how multiple cursors on the same

screen are differentiated (by color, for example).

e The CuRT toolkit provides low-level functionality, through method calls

in the API, to allow all of these components of cursor/keyboard redi-
rection mentioned above to be maintained by the MDE system. Used
irresponsibly, the basic cursor/keyboard redirection functionality of the
CuRT system could introduce grave vulnerabilities to the machines in an
MDE. It is the responsibility of the MDE system itself to ensure that
cursor/keyboard redirection can only occur on public or other previously

approved machines, for example.

The overall goal of this project was to create a toolkit to enable cursor/keyboard
redirection in a MDE system as described above. A natural next step would be
to conduct user studies conducted to understand how people use input redirec-

tion as part of a larger collaborative effort in MDEs.

Related Work

3.1 Large Screens

The need for multiple users to collaborate on a single task has caused a push for
the development of large screen environments, where multiple users can look at

the same task on the same screen at the same time [13][10][29][13].

3.2 Multiple Desktops and Multiple Display
Environments (MDEs)

Large screen environments are beneficial because multiple users can comfort-
ably look at the same screen at the same time for collaborative tasks, but they
generally do not offer higher resolution as compared to displays of normal size.
When multiple monitors are not available, special techniques can be applied to
maximize productivity with a one-monitor system [15][9][16][33][34]. But when
multiple monitors are available, there is a push to create MDEs (multi-display
environments), environments where multiple computers with multiple displays
are integrated into one single system. Courtyard [39] was an early system that
integrated individual displays with large screens. iRos [17] is an event heap
that creates an “interactive workspace” that allows multiple devices to func-
tion as a single, connected workspace. iRos was used to create iRoom [11],
which is a system that allows collaboration with mobile devices, such as PDAs.
iRoom is limited to mobile devices, and it is application-specific; applications
must be tailor-made or modified to support the iRoom framework. Gaia [35] is
“middleware” that allows communication between “active spaces”; again, ap-
plications must be specifically designed to work with Gaia. The CuRT system
differs from this in that it is completely application-independent. It communi-
cates with applications through nothing more than mouse clicks and keystrokes,
which are universal to all applications. It also provides a toolkit approach to
input redirection; CuRT does not manage the MDE itself; rather, it provides
a straightforward API so that existing MDE managers can easily include input

redirection as a component of their systems.

3.3 “Reaching” with Large Displays

One important issue regarding large displays (and tabletop displays) is that of
being able to “reach” certain areas of the screen. This areas can be difficult
to reach either because the screen is too large for the user to physically reach
with a stylus, or because the MDE contains so many desktops that it is a time-
consuming process to drag the cursor across them [31][28][19][27][1][26]. The
CuRT system avoids these issues by allowing a user to send his local cursor
to any arbitrary display in the system—assuming that within the larger MDE
system that is using CuRT as an API (see Section 5.2.2.2), he has the proper
permissions to do so. There is no issue of reaching in this case, since the user
can control the redirected cursor from the comfort of his own machine. And
regarding the issue of dragging the cursor across several desktops, assuming the
larger MDE provides an easy method to allows the user to redirect his local
cursor to a specific screen (without first passing through intermediary screens),
the issue of dragging the cursor across multiple screens is also resolved. Similarly,
the Spotlight [20] project was designed to allow a user to highlight a specific
region of a large screen used for collaborative tasks. Using CuRT, a cursor can
be redirected to the large screen and pointed to the specified region to achieve

the same result.

3.4 Creating Views into Application Windows

Several interesting, task-specific systems have been built on top of the basic
concept of the MDE. The VNC system [41] is a cross-platform utility that
provides a user on one machine with a window view of the entire desktop of a
user on another machine. Similarly, the X window system [36] is a cross-platform
utility that allows an application running on one machine to be displayed in a
window on another machine. Wincuts [38] extends this functionality to allow
an arbitrary rectangular region of an application running on one machine to be
displayed in a window on another machine. MightyMouse [5] also extends VNC’s
functionality to incorporate turn taking and user/application preferences when
performing collaborative tasks across multiple machines. A secondary portal
into an application window can also be customized to provide restricted-access,
useful for situations such as when a speaker would like to provide a document
to the audience, but with certain aspects of the document blocked or restricted
[2]. In all of these cases, however, only one cursor/keyboard can interact with a
given application window at a given time. The CuRT system improves on this by

allowing multiple cursors to interact with an application window simultaneously.

3.5 Application-Specific Collaboration

Early work in application-specific multi-user collaboration includes [12], which
allows each user to have his own view into a common application, and Quilt [22],
which was an early collaborative document editing tool that allowed tailored
views based on a permission hierarchy for the users of the system. CoWord [44] is
a more recent project that has extended Microsoft Word to allow multiple users
to edit the same Word document simultaneously. Each of these applications is

application-specific, while CuRT is application-independent.

“Intelligent collaboration transparency” [23] is an approach that attempts to
allow users to perform a collaborative task on heterogeneous applications but
within the same application domain (for example, word processing). Again, this
approach is limiting because a separate framework must be designed for each
application domain. CuRT is not only application-independent, it is application-

domain-independent.

3.6 Input Redirection

The x2x [43] and x2vnc [14] systems extend the X window system to allow
mouse and keyboard control to be redirect from one machine to another. This
functionality is X-window-specific, and it allows only a one-to-one input redirec-
tion, where CuRT does not require X windows and provides many-to-one input

redirection.

The Mouse Anywhere component of Easy Living [6] allows for input redirection
to the screen that is physically closest to the user. Again, this is limited to

one-to-one input redirection.

PebblesDraw is a drawing program that uses the PebblesCommander system
[25]. Tt allows multiple cursors, each controlled by a PDA, to interact with
the drawing program at the same time. Each cursor can represent a different
drawing tool, and they can all use their drawing tools simultaneously on the

screen. This is necessarily application-specific.

The SDG system in [40] allows for simultaneous input, but only on one specific
machine, and only in a specially-designed Java drawing application used within

a user study environment.

The InfoTable and InfoWall [32] allow input redirection from laptops to other
laptops and other types of displays, but only when using specialized Java appli-
cations that use the Java RMI to transfer the pointing and dragging events. The
CuRT system supports native Windows applications, without any modifications

or special setup required.

The PointRight system [18] allows for users on multiple machines to direct their

7

input to other machines, using edge detection to send a cursor from one machine
to the next (the keyboard input follows the mouse input, as is the case with the
CuRT system). However, it does not allow for multiple cursors to be present on

the same screen at the same time.

The system whose functionality is closest to that of CuRT is [42]. It uses the
X window system to provide cursor redirection functionality, but it also allows
for multiple cursors to control the same machine at the same time. It does this
in much the same way that CuRT does, by using floating windows to simulate
the additional cursors. Based on the implementation description of this system,
it appears that when one cursor is performing a drag, it does not lock out the
other cursors present on the same screen; instead, it places their actions into
an event queue, which may cause undesired operations to occur after the first
drag is done. Second, it appears that this application was made for a specific
purpose, that of control room collaboration. No API is provided to allow this

tool to be used to provide input redirection functionality in other applications.

3.7 Interfaces for Managing Applications in an
MDE

Several interfaces are available to manage applications in an MDE, including
iCrafter [30], ARIS [3], and SEAPort [4]. One of their primary limitations is

that none of them currently supports cursor redirection.

Specifically, SEAPort [4] is a tool that provides the ability to relocate applica-
tions from one machine to another in an MDE. SEAPort maintains a spatial
map of the multiple, heterogeneous devices in the MDE. A graphical version of
this mapping, along with iconic representations of the currently running appli-
cations on each machine, is provided to the user as a means to interact with
the system. The user can perform a drag-and-drop action to relocate an appli-
cation from one machine to another. Currently, applications can be relocated
arbitrarily from one machine to another, but there is no way for multiple users
to interact with one instance of a running application at the same time. The
CuRT system was designed with the intention of providing SEAPort (or an ex-
tension of SEAPort) with the ability to perform input redirection, through the
use of the CuRT API.

Usage Scenarios

This section describes four possible user scenarios that could be facilitated by
either the CuRT system as a standalone application, or the CuRT system as

part of a larger program.

4.1 A Single User Giving a Presentation on a

Large Display

A user connects both his personal laptop and the machine running a shared
large display to the CuRT system. The user wishes to control both machines
from one set of input devices. He can control his own machine locally, but
then he can send his mouse/keyboard input to the large display to manage the

presentation. See Figure 4.1.

bingle Large Screen

SmartBoard
res;ﬂul-cm 1360768

Mon-zoomable, non
pannable: working
area is the full view of
the workspace

gteraction s pen-
gd; user stands
alks in front of
reen

Figure 4.1: This is a photo of a user controlling a presentation on a large screen
using input redirection from his personal laptop.

4.2 Multiple Users Doing Early Sketching to
Create a Prototype

Each user connects his personal laptop to the CuRT system, and the machine
running a shared large display is also connected. Each user can do his own
sketching on his private laptop display, but he can also easily send his local
input to the shared large display. When multiple cursors are present in the
drawing/sketching program on the shared display, social protocol must take
over. If one user is currently sketching (i.e. enacting a mouse drag with his
virtual cursor), all other cursors are locked out, and the other users must wait
until he finishes. When he is done, another user may make a sketch while the

others wait. This turn-taking continues until the sketch is complete.

4.3 Multiple Users Co-Writing a Paper

Each user connects his personal laptop to the CuRT system, and the machine
running a shared large display is also connected to the CuRT system. One user
will most likely be the primary writer and will begin to write the document
on the shared large display. This provides a persistent and peripheral view
of the document-in-progress for the other users; as they do their own internet
research, brainstorming, or prewriting on their local machines, they can look
up at the master document whenever they choose. Occasionally, a user may
want to take control of the master document temporarily. He simply sends his
mouse/keyboard input to the shared display, and he can begin writing from
his own machine. Again, social protocol takes over when multiple users are
remoted to the same machine, and they must take turns. If two users try to
type to the same machine at the same time, chaos ensues because both streams
of characters are sent to the same window at the same time (see Section 6.1
under “Simultaneous keyboard input on two separate forms”). The CoWord

project [44] provides similar functionality. See Figure 4.2.

4.4 One Continuous Desktop Comprised of
Multiple Desktops

As demonstrated in the PointRight system [18], another benefit of cursor redi-
rection is the ability to create one “superdesktop” out of several desktops tiled
together. This requires one significant extension to the CuRT system: a larger
system, using the CuRT API, would need to provide a listener for the CuRT
edge detection. The larger system would also need to maintain a logical topog-

raphy of the screens in the physical space. When the system detects than an

10

Figure 4.2: This is photo of two users co-writing a paper on a shared public
display while doing research on their own personal laptops.

edge has been reached by a cursor, it simply relocates that cursor to the appro-
priate screen. This is similar to an extended desktop on a single machine, but
there are several advantages to using cursor redirection. First, there is theoret-
ically no limit to the number of desktops that can be connected to the system.
Second, when multiple users are participating, the protocol for which user can
be connected to which machines can be arbitrarily complex. For example, one
user, when his cursor reaches the edge of machine A, could be sent directly to
machine B, whose screen is physically located next to machine A. But a second
user, who does not have access to machine B, may skip directly from machine A
to machine C when making the same move as the first user. These access rules

would be maintained by the application that is extending the CuRT system.

11

CuRT Implementation

As previously mentioned, the Windows operating system supports exactly one
mouse cursor on the screen at a given time. The mouse operations are processed
a very low level in the system so as to keep the mouse from tying up the com-
puter’s higher-level resources, and also to allow the mouse to continue to func-
tion without lag when the computer’s resources are in heavy use. Due to this,
it is fundamentally impossible to develop a system in Windows that allows mul-
tiple mouse cursors to function on the same machine at the same time. The

4

CuRT system provides a workaround, where “virtual cursors” are used to simu-
late actual cursors. Virtual cursors are simply small Windows forms that have
the same size and shape as actual cursors. They can move around the screen on
machine A, receiving input from the actual mouse on machine B, with no prob-
lem. The problem arises when a virtual cursor must enact a click or a drag on
the machine where it is currently being remoted. To simulate this, the virtual
cursor must “borrow” the machine’s local cursor. For a single or double click,
this is just a matter of sending the local cursor to the location of the virtual
cursor for a split second, just long enough to enact the click, and then sending
it back to its original location. This causes minimal disruption to the user of
the machine’s local cursor. The situation is more complicated when a virtual
cursor needs to perform a drag action. In order to perform a drag, the local
cursor must be completely disabled during the entire duration of the drag, since
the cursor cannot be both places at the same time. The situation becomes even
more complicated when multiple virtual cursors are located on a screen at the
same time (see Chapter 4 for specific scenarios involving multiple cursors). For
now, when the machine’s actual cursor is “borrowed” to enact a virtual cursor’s
click or drag, the actual cursor and the virtual cursor are both visually present
at the location where the click or drag is taking place. Depending on the actual
cursor’s orientation, it may or may not obscure the virtual cursor. The primary
benefit of both cursors appearing on the same spot, at least when the virtual
cursor is not obscured, is that the virtual cursor remains identified by its color,
and the actual “borrowed” cursor often changes to represent the action that is
currently taking place; for example, a text cursor to indicate text selection, or
a pencil to indicate a drawing tool. See Section 6.2 under “Customizable cursor

icons” for possible future work regarding cursor images.

While not ideal, the above scenario is the best approximation to a multiple-

12

cursor environment, given the current limitations. It should be noted that
keyboard redirection faces fewer limitations than cursor redirection. Whenever
any key is pressed on any machine whose input is currently being redirected to
a given machine, that key press is immediately enacted on the given machine.
This would obviously cause chaos if two users are trying to type at the same
time. However, the likely result would be that social protocol would take over;

the users would simply end up taking turns.

This chapter describes the implementation of the CuRT system as summarized
above, focusing primarily on interesting challenges that were overcome when

simulating cursor and keyboard redirection.

5.1 Development Environment and System

Requirements

The CuRT system was written in Microsoft Visual C# on Microsoft Visual
Studio 2005 Professional Edition. Based on testing on various machines, 256
MB of RAM is necessary, and 512 MB of RAM is recommended to run the
CuRTClient or the CuRTServer. 512 MB of RAM would probably be required
to run the CuRTClient and the CuRTServer on the same machine at the same
time, and more RAM may be required if the CuRTClient is used as an API
(Application Programming Interface) within a larger application. Also, several
functions were imported from user32.d11 in several classes in the CuRT system
to provide the following functionality: registering/releasing hotkeys, listening for
cursor/keyboard events, blocking cursor/keyboard input, and getting/setting

the local cursor position on the screen.

5.2 Basic Functionality

5.2.1 Server/Client Architecture

To begin, the CuRTServer executable must be run on a machine with a net-
work connection. The same machine can also have a CuRTClient running on
it, if desired. The CuRTServer offers no options to set, and no interaction. It
simply runs in a console window and provides feedback when users connect.
Users running the CuRTClient (either as a standalone executable or as an in-
stantiated CuRTClient object within a larger application) must connect using
the IP address or hostname of the CuRTServer on a fixed port (this fixed port
cannot be seen or modified by the user). The SocketModule object that is part
of the CuRTClient is responsible for all network connection initializations, all

network listeners, and all network communication. (It can be assumed that

13

any network operations described as taking place in the CuRTClient are actu-
ally taking place in the SocketModule that is part of the CurTClient.) Each
CuRTClient also manages a CursorModule, which is responsible for monitoring
all mouse and keyboard activity, displaying cursors on the local machine that

have been remoted from other machines, etc.

CuRTServer CuRTClients
client1
e
CCm1~-——- SM|CM

Co1—-——-——-—- sSM | CM

Figure 5.1: This diagram illustrates the CuRT server/client architecture. CS
= CuRTServer; CC = client communicator; SM = socket module; CM = client
module; dotted lines = UDP network communication

The CuRTServer has a (TCP) transmission control protocol listener that con-
tinually listens for new connections on the fixed port. Once a connection is
made, the CuRTServer sends a message to the CuRTClient indicating the new
port to which it should connect; this port is incremental for each new client that
attempts to connect. Then, the initial connection is broken. The CuRTServer
then creates a new ClientCommunicator object that is specifically designated
for the client that is making the connection. This ClientCommunicator belongs
to an array of ClientCommunicators for all currently connected clients. The
ClientCommunicator immediately starts a TCP listener on the new, incremen-
tal port, and the CuRTClient initiates a TCP connection using this port. Then,
a UDP (user datagram protocol) connection is established. A UDP listener is
initialized in both the ClientCommunicator and the CuRTClient, and each is

14

able to send UDP messages to the other. This is how all communication occurs
between sever and client (and thus between client and client, as all client-to-
client communication must first pass through the server). Both the TCP and
UDP connections persist until the CuRTServer is closed, the CuRTClient is
closed, or the network connection is lost. The only purpose of the TCP listener
is to throw an exception on the client side when the connection between the
client and the server is broken. This exception is caught by the client, and the
GUI is updated to inform the user that the connection has been dropped. Other
than that, the UDP connection is used for all communication. While the UDP
connection theoretically could allow messages to be dropped, it has performed
perfectly in all testing done so far with the CuRT system. It was chosen because
an extremely fast message pipeline is required to send cursor coordinates with

minimum lag. (See Figure 5.1 for a diagram of the server/client architecture.)

5.2.2 CuRT as a Standalone Application Versus CuRT as
an API

The CuRT system was designed to perform two primary functions. First, it was
designed to be a light, easy-to-use standalone application with a basic GUI that
people can use to redirect their cursor/keyboard input from their own machine
to another machine connected to the same system. Its primary intended use,
however, is as an API. Instead of executing the application and interacting with
it directly, a developer can instantiate a CuRTClient object within a larger

program. This section describes how both modes of operation work.

5.2.2.1 Using the CuRT System as a Standalone Application

The standalone application provides extremely basic input redirection function-
ality. When the application is first executed, a connection box appears. The
user must specify a username for his client machine, the IP address or hostname
of the CuRT server (which must already be running when the local user tries to
connect), and a hotkey, to be used to send the local cursor/keyboard input back
to the local machine when the input is being remoted. When the local user tries
to connect to the system, all the different components are initialized, including
the network connection to the server, the mouse/keyboard hooks on the local
machine, the virtual cursors on the local machine, and the hotkey. If any of
these initializations fails, the local user is given an error message to indicate
where the failure occurred. Otherwise, the connection box disappears and the

main GUI window appears.

The GUI provides a dropdown menu that lists the usernames of all clients that
are currently connected to the system. A user simply chooses the client to

which he wants to send his local machine’s cursor/keyboard input and clicks

15

the “Send” button. As long as the selected machine is not his own, his local
cursor/keyboard input is immediately redirected to the other machine. Only by
pressing the hotkey (which was specified by the user when he first connected)

can the user return his local cursor/keyboard input to his local machine.

There is no way to enforce a protocol regarding which clients can connect to
other clients in the system. For example, if two personal laptops are connected
to the system, the user of one could easily send his cursor/keyboard input
to the other, without any confirmation. The CuRT system as a standalone
application was meant to be used experimentally, as a proof of concept, and
not in a normal collaborative setting (see Section 6.2 under “More advanced

standalone application”).

5.2.2.2 Using the CuRT System as an API

When CuRT is used as an API, the instantiated CuRTClient object connects
to the CuRT server just as the standalone application would, but the developer
has complete control over the actions of the cursor redirection. Instead of the
user interacting with the GUI to redirect his cursor/keyboard input to other
clients in the system, method calls are made by the developer (please see the
Appendix, Chapter 8, for a complete list of available CuRTClient method calls).
Since the CuRT system allows any client to redirect its cursor/keyboard input
arbitrarily to any other client, the CuRT API provides the lowest layer of input
redirection. The larger program that controls the CuRTClient object is then
free to establish more advanced input redirection functionality. One possibility
is a more advanced and more powerful GUI that a user can utilize to have more
control over the input redirection. Another possibility is to implement a proto-
col dictating which clients are allowed to redirect input to which other clients
(only to shared, public screens for example). This protocol can be arbitrarily
complicated and can include authorization requests. For example, both laptop
A and laptop B can redirect their own cursor/keyboard input to the public large
display; laptop A cannot redirect its cursor/keyboard input to laptop B; laptop
B can redirect its cursor/keyboard input to laptop A, but only after request-
ing authorization, and laptop A can revoke authorization at any time. A third
possibility for a more sophisticated cursor redirection system is to implement
a feature that “jumps” a cursor from one screen to another when the cursor
comes close to the edge of the first screen (presumably, the screens would be
physically located next to each other). This feature would make use of the edge
detection system that is part of the CuRT system (see Section 5.3.2). For more
information regarding the potential expansion of the functionality of the CuRT

system within a larger system, see Section .

16

5.2.3 Loading and Unloading the Hotkey

In both the standalone application version and the API version of the
CuRTClient, a hotkey must be defined. The hotkey is used to send a user’s
cursor/keyboard back to his own machine when it is currently being remoted
to another machine. In the case of the standalone application, the user chooses
the hotkey manually, and in the case of the API, the hotkey is defined program-
matically and is passed as a parameter to the CuRTClient constructor. In both
cases, the hotkey can be and of the three keys ALT, CTRL, or WINKEY, combined
with any key A-Z or F1-F12. Also in both cases, the system attempts to register
the hotkey using the RegisterHotKey function imported from user32.d11. If
the hotkey cannot be registered, meaning that the hotkey is already registered
on the system to perform another function, the initialization of the CuRTClient
fails. If the hotkey registration is successful, then the CuRTClient can continue
to initialize. In the case that the CuRTClient program terminates, the hotkey

is freed using the UnregisterHotKey function, also from user32.d11.

5.2.4 Mouse/Keyboard Hooks

The file user32.d11 provides functionality to create global hooks, or listeners,
for all mouse and keyboard activity that happens on the local machine. These
hooks are initialized as soon as the CuRTClient is initialized, and they remain
active until the CuRTClient is closed. The mouse/keyboard hooks serve to pass
any cursor/keyboard activity to the machine where the local input is currently
being remoted. The mouse hook is also used to perform edge detection of the

local cursor on the local machine.

5.2.5 The VirtualCursor Class and Its Subclasses

The VirtualCursor class is the parent class of the instantiated VirtualCursors
of various colors that are maintained by the CuRTClient class. The parent class
provides some member variables that are used by the CuRT system, mainly
for use with edge detection. There are ten VirtualCursor subclasses, one for
each color (aqua, blue, brown, gray, green, magenta, purple, red, white, and
yellow): for example, there is a VirtualCursorAqua class. There is also a
class corresponding to each color that represents a “blocked” cursor, such as
VirtualCursorAquaBlocked, meaning that the cursor has a red “X” through
it (see Section 5.4.2). Using the ten VirtualCursor subclasses and the ten
“blocked” VirtualCursor subclasses, setting the color of a virtual cursor on
the local machine, as well as temporarily “blocking” the virtual cursor, is as
simple as instantiating an object of the correct VirtualCursor subclass during

the CuRTClient initialization process, and then calling the Show() and Hide ()

17

commands as necessary. There is an array in the CursorModule that stores
the ten (potentially visible) VirtualCursor subclassed objects, of varying col-
ors, and there is a corresponding array of “blocked” VirtualCursor objects.
The indices of these VirtualCursors (and “blocked” VirtualCursors) corre-
spond to the indices of the clients that are potentially connected to the server.
The CuRTClient uses the Visible property of an individual VirtualCursor
to determine if that cursor is currently being remoted to the local machine:
if a VirtualCursor form is visible, it is currently being remoted to the local
machine, and if it is invisible, it is currently is not being remoted to the local

machine.

To make the VirtualCursor, which is simply a Windows form, appear to be
a real cursor, several steps are taken. First, the transparency property of the
Windows form has to be set. For the transparency property, a color is indicated
(using RGB values), and any part of the background of the Windows form that
matches those RBG values is set to “transparent,” meaning that whatever is
“behind” the form on the Windows desktop is shown, instead of that color. This
is necessary because cursors are not rectangular, but “cursor-shaped,” and the
Windows form itself must also be “cursor-shaped.” Then, the background image
of the Windows form is set to be a bitmap image of a cursor of the appropriate
color. However, since this is the background, the image repeats, so two opaque
panels are placed in the correct positions so as to “hide” the repeating cursors
from view. The end result is one cursor image that is transparent outside the
borders of the cursor itself, which gives the illusion of an actual cursor. Note:
CuRT currently has a minor issue regarding the transparency of the cursors;

please see “Color depth and Windows form invisibility” in Section 6.1.

5.2.6 Network Message Codes

As mentioned in Section 5.2.1, the CuRTServer acts as the switchboard for
all messages; there is no direct client-to-client communication. Generally, a
client generates a message and sends the message to the server. The server’s
ClientCommunicator object for that specific client receives the message. Using
the index numbers of the client generating the message and the client that will
eventually receive the message, the ClientCommunicator may modify some of
the information stored in the server about the individual clients, such as which
clients are currently redirecting their input to other clients. It then sends the

pertinent information to the client that is to receive the information.

This section contains two sets of messages used in communication between the
CuRTClient and the CuRTServer. The first set is client-to-server communica-
tion, and the second set is server-to-client communication. Currently, the first
part of the message is the message code itself, and then any needed parameters

are concatenated at specific indices in the message string (character array). One

18

possible improvement to the CuRT system is to use an XML message structure
as a cleaner way to specify message codes and associated parameters (see “XML

messaging protocol” in Section 6.1).

5.2.6.1 Client-to-Server Messages

o “MR”+ X coordinate change + Y coordinate change: this message stands

”

for “move (relative),” and it indicates that a local cursor, currently being
remoted to another machine, has moved, and the virtual cursor should be
moved as well. The move is relative because only the relative X and Y
coordinate change since the last recorded cursor position, in pixels, is sent

in the message.

o “KEYPRESS” + walue of key pressed: this message indicates that a key
was pressed on a local machine, and that keypress should be passed to
the machine where the local machine’s cursor/keyboard input is currently

being remoted.

o “SC” + cursor index + machine index + X coordinate starting position +
Y coordinate starting position: this message indicates that the machine at
the specified machine index should create a virtual cursor at the specified
cursor index. This new virtual cursor should immediately be relocated to

the specified X and Y coordinates.

e “R(C”: this message indicates that the cursor of the machine that sent the
message should no longer be remoted. The ClientCommunicator finds the
index of the machine where the current local cursor is being remoted, and

it sends the appropriate message to that machine.

e “BR(C”: this message indicates that the virtual cursor owned by the ma-
chine that sent the message should be temporarily “blocked,” meaning
that the “blocked” VirtualCursor object should be temporarily displayed
in place of the normal VirtualCursor object. This takes place on the ma-

chine to which the cursor is currently being remoted.

e “UR(C”: this message “unblocks” the virtual cursor that was blocked by

the previous message.

e “LFTCLKDN”: this message indicates that the local machine that sent
the message has just enacted a left click down, and that this click should be
passed along to the machine to where the local machine’s cursor /keyboard

input is currently being remoted.

o “LFTCLKUP”: this message indicates that the local machine that sent
the message has just enacted a left click up, and that this click should be
passed along to the machine to where the local machine’s cursor /keyboard

input is currently being remoted.

19

e “RGTCLKDN”: this message indicates that the local machine that sent
the message has just enacted a right click down, and that this click
should be passed along to the machine to where the local machine’s cur-

sor/keyboard input is currently being remoted.

e “RGTCLKUP”: this message indicates that the local machine that sent
the message has just enacted a right click up, and that this click should be
passed along to the machine to where the local machine’s cursor /keyboard

input is currently being remoted.

5.2.6.2 Server-to-Client Messages

o “MR” + cursor index + X coordinate change + Y coordinate change: this
message is the same as the “MR” message in the previous section, except
that the cursor index is included so that the client knows which of its

virtual cursors needs to be moved.

o “KEYPRESS” + originating client index + value of key pressed: this
message is the same as the “KEYPRESS” message in the previous section,
except that the originating client index (the client that pressed the key)
is included. This index is not currently used, but it may be interesting for
future improvements to the CuRT system (see “Simultaneous keyboard

input in two separate windows on the same machine” in Section 6.2).

o “SC” + cursor index + X coordinate starting position + Y coordinate
starting position: this message is the same as the “SC” message in the
previous section, except that only the cursor index is indicated. This cur-
sor index indicates the index of the virtual cursor that should be displayed
on the local machine, at the specified coordinates. Note that if the cursor
index parameter is the same as the client’s local index, this means that the
client should activate its own cursor, which had previously been remoted
to another machine (presumably the same machine that is sending the

message).

o “RC” + cursor index: this message is the same as the “RC” message
in the previous section, except that the index of the virtual cursor to be
removed is included. The local machine that receives the message removes

the virtual cursor.

e “BR(C”: this message is the same as the “BRC” message in the previous
section, except that the index of the virtual cursor to be blocked is in-
cluded. The local machine that receives the message blocks the virtual

cursor.

e “UR(C”: this message “unblocks” the virtual cursor that was blocked by

the previous message.

20

o “LFTCLKDN”: this message is the same as the “LFTCLKDN” message
in the previous section, except that the index of the virtual cursor to be
clicked is included. The local machine that receives the message enacts a

left click down at the position of the indicated virtual cursor.

o “LFTCLKUP”: this message is the same as the “LFTCLKUP” message
in the previous section, except that the index of the virtual cursor to be
clicked is included. The local machine that receives the message enacts a

left click up at the position of the indicated virtual cursor.

e “RGTCLKDN?”: this message is the same as the “RGTCLKDN” message
in the previous section, except that the index of the virtual cursor to be
clicked is included. The local machine that receives the message enacts a

right click down at the position of the indicated virtual cursor.

e “RGTCLKUP”: this message is the same as the “RGTCLKUP” message
in the previous section, except that the index of the virtual cursor to be
clicked is included. The local machine that receives the message enacts a

right click up at the position of the indicated virtual cursor.

5.3 Extended Functionality

5.3.1 Cursor Update Resolution

The CuRT system generally performs well in practice, with minimal lag as
cursors are remoted from one machine to other. However, when several cursors
are remoted to the same machine at the same time, and several cursors are
moving at the same time on the same machine, lag can occur as the machine
tries to perform edge detection on all of the cursors. The CuRT system provides
a feature known as cursor update resolution in order to improve performance
in situations such as this. Cursor update resolution is an integer parameter
that is set when the CuRTClient constructor is called (note that cursor update
resolution has a default value of 3 and cannot be changed in the standalone
application mode). The cursor update resolution parameter represents how
many coordinate updates are skipped before a relative coordinate change is sent
from the local machine to the remote machine where the cursor is being remoted.
For example, a cursor update resolution of 3 would mean that only every third
coordinate update is actually communicated to the machine where the cursor
is being remoted. Since the coordinates are communicated relatively, when the
cursor update resolution is greater than 1, the relative change communicated is
the change since the last communication, not since the last coordinate change.
In practice, cursor update resolutions such as 3 or 4 have improved performance

significantly without noticeably affecting the smoothness of the cursor’s motion.

21

5.3.2 Edge Detection

As mentioned in Section 5.2.2.2, an obvious extension of CuRT is a system that
manages an MDE (multiple-display environment) and that uses CuRT as an
API to allow the user to send his local machine’s cursor to any machine within
a set of allowable, public displays in the MDE. There are several ways to allow
this, but the most common is to allow the cursor to “jump” from the edge of

(*** sources here or in

one screen to the corresponding edge of another screen
the next few sentences-MDE room mapping, edge jumping). There are several
challenges involved. One such challenge is how to maintain a spatial map of the
various and potentially mobile displays in the room so that the “jump” from
the edge of one display to the edge of another display is logical according to
the spatial arrangement of the displays. This challenge is left up to the MDE
system to solve. A second challenge is to differentiate between the case when
the user is trying to perform a “jump” to another screen and the case when
the user is simply working on the edge of his own screen’s desktop space or has

otherwise inadvertently moved his cursor to the edge of the screen.

CuRT includes two mechanisms to detect the user’s intention to “jump” his
cursor to another screen. When activated, either or both of these mechanisms
can fire an event for which the developer can listen in his code. The event
indicates that the user is attempting to “jump” his cursor at the top, bottom,
left, or right edge of his screen. Note that the screen on the user’s local machine
is defined as the entire desktop, so in the case of an extended desktop, since the
rectangular regions of the multiple displays can be of different sizes and can be
connected to each other in infinitely many ways, the edge of a screen is defined

as an individual screen border past which no adjoining screen exists.

Also note that both edge-detection mechanisms work for the actual local cursor
as well as any virtual cursors on a given machine. The event, when fired, provides
the cursor’s client index, the cursor’s X and Y coordinates on the screen when
the jump occurs, the part of the screen where the jump occurs (top, bottom,
left, or right), the screen object where cursor is located (for use in systems using
multiple monitors), and the source of the event (0 for loiter detection, and 1 for

speed detection).

5.3.2.1 Speed Detection

The first mechanism detects the cursor’s “speed” as it moves toward the edge of
the screen, where “speed” is defined as the number of pixels (either horizontally
or vertically, depending on which edge is being approached) that the cursor
travels between each detected change of coordinates in the mouse listener (see
Figure 5.2 for an illustration of the speed detection process). For example, when

the user moves the cursor extremely slowly, the mouse listener will detect every

22

single coordinate change, both horizontally and vertically. An example of the
series of detected coordinates (X, Y) might be (100,100), (101, 100), (102, 101),
etc. In the case where the user moves the cursor extremely quickly, several pixels
will be skipped between each coordinate change. An example of the series of
detected coordinates (X, Y) might be (100,100), (105, 110), (111, 109). In this
case, the cursor is redrawn on the screen only at those discrete coordinates, but

our perception of the motion is that is smooth and connected.

When the CuRT system is used as an API, the developer has the option to define
three parameters to detect the speed of the cursor as it approaches the edge.
These three parameters are: zone size, minijump size, and minijump threshold.
The zone size, defined in number of pixels, defines two horizontal bands of screen
space (starting from the top and the bottom edges of the screen and extending
toward the center) and two vertical bands of screen space (starting from the left
and right edges of the screen and extending toward the center). The minijump
size is also defined in pixels. When the cursor is within one of the four zones, any
coordinate change toward the edge of the screen (respective to the current zone),
where the number of pixels changed is greater than or equal to the minijump
size, is counted as a minijump. Whenever a coordinate change does not create
a minijump for a given zone, the minijump zone is reset for that zone. If the
minijump count for a given zone reaches minijump threshold, then a “jump”
event is fired, to be detected and acted upon by the developer using the CuRT
API. Note that the zones overlap, forming squares at the four corners of the
screen. This causes no problem, as the minijump counts are kept separate for

each of the four zones.

5.3.2.2 Loiter Detection

The second mechanism, loiter detection, detects when the cursor has “loitered”
along one of the edges of the screen sufficiently long enough to fire a jump event
(see Figure 5.2 for an illustration of the loiter detection process.). Note that
when the cursor “loiters” at the edge of the screen, one of the two coordinates
necessarily remains constant: the X coordinate remains at 0 when loitering at
the left edge; the X coordinate remains at the value of the width of the screen
when loitering at the right edge; the Y coordinate remains at 0 when loitering
at the top edge; and the Y coordinate remains at the value of the height of the
screen when loitering at the bottom edge. In each case, movement of the non-
constant coordinate is required. In other words, moving the cursor to the edge
of the screen and leaving it there, with no further movement, will not trigger
a loiter jump. The loiter detection mechanism takes one parameter, the loiter
threshold. This represents the number of coordinate changes in the non-constant
coordinate that must be detected in a row. If the constant coordinate changes,

the loiter count is reset. For example, if the loiter threshold is 3, and the cursor

23

Figure 5.2: This diagram of the upper-left corner of the display illustrates the
cursor movement that takes place during speed detection. The zone size in
this case is 30 pixels, as indicated, and the minijump size is 10, as indicated.
Two 10-pixel minijumps are registered within the zone in this example. If this
is greater or equal to the minijump threshold, then a speed detection event is
triggered.

is loitering on the left edge of the screen, a possible series of coordinates (x,
y) might be (0,100), (0, 103), (0, 104). After the third coordinate set, the
loiter event is fired, since there are three coordinate sets in a row with X=0. In
contrast, with the coordinate series (0,100), (0, 103), (1, 104), (0, 106), no loiter
event is fired, since the largest number of coordinate sets in a row with X=0 is
two. See the “Edge detection studies” in Section 6.2 for further discussion of

the two jump detection mechanisms.

5.4 Notable Challenges

5.4.1 When to Recognize Input, and When to Block It

An important challenge in cursor/keyboard redirection arises on the local ma-
chine when trying to redirect cursor/keyboard input from a local machine to a
remote machine. The local machine must continue to listen for all mouse and
keyboard activity, but without allowing it to take place on the local machine.
Even more complicated is the situation where the local cursor/keyboard are
being remoted to another machine, but another machine is currently remoting
its mouse and keyboard activity to the local machine. In that case, no local
mouse and keyboard activity should affect the local machine, but input coming

from the other machine should affect the local machine.

24

Figure 5.3: This diagram of the upper-left corner of the display illustrates the
cursor movement that takes place during loiter detection. In this case, the
cursor loiters along the top edge of the screen during six coordinate changes. If
this is greater or equal to the loiter threshold, then a loiter detection event is
triggered.

To help overcome this challenge, the CuRT system includes a Windows form
subclass called ClickGuard. The purpose of the ClickGuard is that when it is
enabled and brought to the front of the Z-order of the windows that are currently
open, it effectively disables all clicks and keypresses on the local machine, but it
still allows the clicks and keypresses to be recognized by the mouse and keyboard
listeners that are part of the CuRTClient. ClickGuard is a Windows form that is
automatically set to the dimensions of the primary screen on the local machine.
Tts background color is set to white, and its opacity is set to 2% (see “ClickGuard
opacity” in Section 6.1). The ClickGuard form is hidden when the CuRTClient
starts, but whenever the local input is to be redirected to another machine, the
ClickGuard is shown. The local mouse cursor is hidden from view at this point.
From this point on, no clicks or keypresses are registered on the local machine,
until a command is made to send the local input back to the local machine; at
that point, the ClickGuard is again hidden. However, the mouse and keyboard
listeners remain active, and all mouse and keyboard activity is recognized, even

though the local machine is not affected.

The other challenge occurs when the local input is being redirected to a remote
machine, but another remote machine is redirecting its input to the local ma-
chine. In this case, whenever a mouse down action is to be simulated on the
local machine, the ClickGuard is temporarily disabled. As soon as the mouse

up action occurs, the ClickGuard is enabled again.

25

5.4.2 How Clicks and Drags Affect Other Cursors

Because of the inherent operating-system-level limitation that only one cursor
can perform a click or drag at a given time (see Chapter 1), it is often the
case that other cursors must be “locked out” while one cursor is performing a
click or drag (see Section 5.2.5). The result of this is that no two cursors can
perform a drag at the same time, meaning that no two menus can be open at
the same time, no two sections of text can be selected at the same time, etc.
The CuRT system uses a first come, first served policy when determining which
cursor has priority, regardless of which cursor is local to the particular machine.
The following sections describe specific situations where one or more cursors

must be “locked out” while another cursor performs a click or drag.

5.4.2.1 Virtual Cursor Click/Drag with Local Cursor Present

In this case, a cursor is being remoted (i.e. the cursor local to machine A is
invisible and disabled, and its input is being sent to machine B as a virtual
cursor). See Figure 5.4. The user intends to perform a (virtual) cursor click,
starting with a MOUSEDOWN event (for either the left or the right mouse button)
on machine B. The MOUSEDOWN event actually takes place on machine A, but
the ClickGuard form prevents the click from affecting machine A. However,
the mouse/keyboard listener on machine A detects the MOUSEDOWN event. The
localCursorIsRemote flag in the CursorModule determines whether machine
A’s local cursor is currently being remoted. The flag is true in this case, so
a MOUSEDOWN message is sent by machine A to the CuRT server. The CuRT
server then relays the MOUSEDOWN message to the appropriate remote machine,
machine B (note: in the interest of simplicity, throughout the rest of this and the
following sections, the description of the messages passing through the server will
be omitted). In order for machine B to be able to enact a click/drag action for
the virtual cursor, it must temporarily “borrow” the clicking/dragging ability
of the local cursor. As mentioned in chapter 1, this is a grave and inherent
limitation of current operating systems such as Windows. Upon receiving the
MOUSEDOWN message, the localCursorIsRemote flag is checked, this time on
machine B, to determine whether the local cursor is currently being remoted. If
it is, the procedure follows as described here. If it is not, then the procedure in
the next section is followed, as this means that the local cursor is being remoted.
In the case where the local cursor is present on the local machine (machine B
in this case), the machine B’s local cursor is relocated to the coordinates of the
virtual cursor that is attempting to click (actually, to one pixel above and one
pixel to the left of the virtual cursor, to avoid enacting a click directly on top of
the Windows form that simulates the virtual cursor), and the MOUSEDOWN action
is effected on machine B at that location. Machine B’s local cursor’s previous

location is recorded, and the BlockInput function, imported from user32.d11

26

is called on machine B, which disables all local mouse movement on machine B.
Also, a “blocked” virtual cursor (with a red “X” through it) is displayed in the
previous location of machine B’s local cursor, indicating to machine B’s user
that his cursor is currently disabled (see Section 5.2.5). The drag flag in the
VirtualCursor class is set to true, indicating that a drag is currently taking

place.

Machine A Machine B

click

Figure 5.4: This diagram illustrates a virtual cursor click (on machine B, from
machine A) when the local cursor is present (on machine B). Note that the
letters on the cursors are simply labels representing the machine that owns the
Cursor.

In the case where there are other virtual cursors (besides the one enacting the
click) on machine B, the BlockAllVirtualCursorsExceptOne method in the
CursorModule class uses a for loop to find all active virtual cursors (when
the Visibility property of a virtual cursor is set to true, this indicates that
the cursor is currently active on the local machine), excluding the one that
is actually performing the click. For each active virtual cursor, it is set to
invisible, and its corresponding blocked virtual cursor (again, with a red “X”
through it) is moved to the same location as the active virtual cursor and set to
visible. When a message attempting to move or click a virtual cursor arrives on
the local machine, the local machine first checks to see if a cursor is currently
enacting a drag. If so, the movement or click message is ignored. In this way,
all cursors, both local and virtual, except for the one enacting the click/drag,

are effectively disabled.

In the case of a drag, there is cursor movement after the MOUSEDOWN event and
before the MOUSEUP event. Messages for machine A’s mouse movement are sent
to machine B, just as they would be sent if the virtual cursor were not currently
in a drag state. The only difference is that a MOUSEDOWN action has been effected
on machine B, so any movement of machine A’s virtual cursor on machine B

will move the virtual cursor as well as machine B’s local cursor.

27

All MOUSEDOWN events must be followed by a MOUSEUP event. This MOUSEUP event
is detected on machine A, and a message is sent to machine B. When the message
is received by machine B, all blocked cursors are returned to their normal state,

and the “borrowed” local cursor is returned to its previous location.

In the case of a single, rapid click, the MOUSEDOWN and MOUSEUP events happen
in quick succession. In the case of a double click, the MOUSEDOWN, MOUSEUP,
MOUSEDOWN, and MOUSEUP events happen in quick succession. Both the simulated
single click and simulated double click work well in practice when following the
above procedure. Even though most of the above actions are in preparation for
a prolonged drag, they must still happen in the case of a single click or double
click. This is because after the MOUSEDOWN event occurs, it is impossible to know
whether the user is going to begin a drag motion or just immediately release

the mouse for a single click.

5.4.2.2 Virtual Cursor Click/Drag with Local Cursor Remoted

The procedure for this case is the same as the above case (Virtual Cursor
Click/Drag with Local Cursor Present), with a few exceptions. In the pre-
vious case, the local cursor in machine B is not being remoted, so to “borrow”
it to enact the click/drag is just a matter of relocating it on the same screen
and then moving it back afterward. But in the case when the local cursor in
machine B is being remoted, the process is more complicated. In this case, ma-
chine A’s cursor is being remoted to machine B, and machine B’s cursor is being
remoted to another machine (call it machine C). See Figure 5.5. First, a message
(“BRC”: “block remote cursor”) must be sent to the machine where machine
B’s local cursor is currently being remoted, machine C. Upon receiving the mes-
sage, machine C calls the BlockVirtualCursor method in the CursorModule.
This method disables machine B’s virtual cursor on machine C; the cursor is set
to invisible, the corresponding blocked cursor is relocated to the same position,
and the blocked cursor is set to visible. Note that in this case, only one virtual

cursor is disabled.

At the same time, on machine B, the local cursor (which has been hidden, as
the cursor is being remoted to machine C) is sent to the location where the
click needs to be made. The ClickGuard, which is used to prevent clicks from
occurring on the local machine B while its cursor is being remoted, is temporarily
set to invisible so that the click/drag can occur. Also, local mouse movement
on machine B is temporarily disabled (using the BlockInput function imported
from user32.d11) so that machine B’s mouse activity doesn’t interfere with
either machine B’s actual cursor on machine B, or machine B’s virtual cursor
on machine C. As machine A’s local mouse moves, movement messages are
sent to machine B to move both machine A’s virtual cursor on machine B and

machine B’s local cursor, just as described in the previous section. Then, once

28

Machine A Machine B Machine C

I/t:lit:k: [}\c kﬂ
K,

Figure 5.5: This diagram illustrates a virtual cursor click (on machine B, from
machine A) when the local cursor is remoted (on machine C). Note that the
letters on the cursors are simply labels representing the machine that owns the
cursor.

the MOUSEUP event occurs on machine A, the message is sent to machine B. All
blocked cursors are unblocked, and the ClickGuard on machine B is activated

again to block machine B’s mouse input on its own machine.

5.4.2.3 Local Cursor Click/Drag

In this case, a click or drag is being performed by the local cursor on machine
A, and virtual cursors may or may not be present on machine A. See Figure
5.6. The mouse/keyboard listener is always active as long as the CuRT client
is running, regardless of whether the local cursor is currently being remoted.
When the local CuRT client mouse listener detects a MOUSEDOWN event, it checks
whether the machine’s local cursor is currently being remoted. If it is not
being remoted, this indicates that the user is trying to execute a MOUSEDOWN
on the local machine. As a reaction to this event, for each virtual cursor that
is currently visible (and thus active) on the local machine, the virtual cursor
is made invisible, and the corresponding blocked cursor is made visible. Any
cursor movement messages for the virtual cursors that are received by this same
client first check to see if the machine’s local cursor is enacting a drag. If so, the
cursor movement messages are ignored. In this way, all virtual cursor movement
is disabled while the local cursor is enacting a click/drag. Then, once the local
mouse listener detects a MOUSEUP event, all virtual cursors on the local machine
are set to visible again, their corresponding blocked cursors are set to invisible,

and their cursor movement messages are no longer ignored.

Interestingly, in the case where virtual cursors are present, it would be possi-
ble for them to continue to move around the screen while the local cursor is

in a MOUSEDOWN state. However, in the situation described in the previous two

29

Machine A

click

,

Figure 5.6: This diagram illustrates a local cursor click (on machine A). Note
that the letter on the cursor is simply a label representing the machine that
owns the cursor.

sections, when a virtual cursor is in a MOUSEDOWN state, the local cursor must
necessarily be disabled to be able to simulate the virtual cursor’s click and/or
drag action. To ensure consistency regardless of which cursors are being re-
moted on which machines, all virtual cursors are disabled when any cursor on

a machine, local or virtual, in a MOUSEDOWN state.

5.4.3 Cursor Looping and Pixel Mapping

Another challenge arises with the fact that the local machine and the machine
to where the local input is redirected will often have different resolutions. This
is a problem when the local cursor reaches the edge of the local screen, but
the remote screen (to where the local input is being redirected) still has more
space before the edge is reached. This problem is exacerbated when one or
more of the machines in a system have an extended desktop with two or more
monitors, meaning that the effective width of a machine’s screen can be two-
or three-times the width of a normal screen. To resolve this issue, a cursor
looping system was developed for CuRT. When local input is redirected to a
remote machine, the local cursor is confined to the primary screen (this applies to
systems with extended desktops). The ClickGuard, as described in the previous
section, is activated, and the mouse cursor becomes invisible. Then, any time
the local cursor, which is now invisible, comes to within ten pixels of one of
the edges of the primary screen, it is automatically relocated to the center of
the screen. This works because all mouse movements are sent from the local
screen to the remote screen using relative coordinates; that is, the coordinates
represent the distance that the cursor has traveled since the last time that the
coordinates were sent. This way, the difference in resolution between the local

machine and the remote machine is immaterial. The user does not realize that

30

the looping is happening on the local machine; it appears that cursor is moving
in one continuous motion on the remote machine. Effectively, this provides a
one-to-one pixel mapping from the local machine to the remote machine, so no
factor needs to be determined to convert from the resolution of one machine to

the resolution of another.

31

Future Work

The future work section is divided into two parts. The CuRT system was
designed as a prototype tool; while all basic functionality is provided, some
features are currently lacking that would need to be included for CuRT to be
considered a complete and robust input redirection toolkit. These basic features
are included in the first list. The second list, of extended features, includes
more advanced features, including those that would require the development of
a larger application, using CuRT as an API. Some of these features also include
the possibility of performing user studies to learn more about how users would
interact with and best benefit from a system such as CuRT in a collaborative

environment.

6.1 Basic Features

o Maximum number of users: currently, the maximum number of users that
can be connected to the CuRT system at the same time is ten. If an
eleventh user tries to connect, he simply gets a “connection failed” error

message. This could be extended without much difficulty.

e Reusing client indices: currently, if a user connects to the CuRT system
and then disconnects, his client index is not reused, nor is his username
removed from the master list of client usernames. This would be a rela-
tively easy change to implement that would allow for more efficient use of

the ten possible spots for clients.

o Username conflicts: currently, there is no feature in place to detect user-
name conflicts when users connect to the CuRT system. When a CuRT-
Client method call has a username as a parameter, it simply chooses the
first matching username. This ambiguity would be avoided if duplicate

usernames were prevented at the time the CuRTClient is initialized.

e Redirecting ALT/CTRL/WINKEY key commands: currently, when
a machine’s input is being redirected to another machine, the
ALT/CTRL/WINKEY key commands are not redirected. This limita-
tion prevents keyboard actions such as cutting, copying, and pasting from
taking place virtually.

32

e Preventing ALT/CTRL/WINKEY key commands from executing locally:
currently, when a machine’s input is being redirected to another ma-
chine, the ALT/CTRL/WINKEY key commands are executed on the
local machine. The best solution would probably be to remote all
ALT/CTRL/WINKEY key commands except for the hotkey (used to re-
turn the local input back the local input device) and CTRL-ALT-DEL,
which would create a security concern if it could not be executed on the

local machine with the local keyboard.

o Mouse wheel: currently, mouse wheel activity and third mouse button
activity are not redirected when a machine’s input is redirected to another
machine. This would just be a matter of setting up some additional mouse

hooks and creating a few more messages for client/server communication.

o Color depth and Windows form invisibility: to achieve invisibility on Win-
dows forms, which allows the virtual cursors to be cursor-shaped (see Sec-
tion 5.2.5), the color depth of the local display sometimes needs to be
set to 16-bit (most current displays are set to 32-bit. This seems to be
a problem that is video-card-dependent, as some video cards do provide
invisibility at 32-bit. The easiest solution would be to programmatically
set the color depth of the local machine to 16-bit when the CuRTClient
starts, and then to change it back to its previous setting (normally 32-bit)
when the CuRTClient terminates.

e (Connection lost exception: currently, the CuRTClient does not throw an
exception when it loses the connection with the server. This would be a
useful feature for an application using the CuRT system as an API so that
it can react appropriately when input redirection is no longer possible due

to a dropped connection.

o ClickGuard opacity: currently, in order for the ClickGuard to be able to
intercept clicks properly, its opacity must be set to a minimum of 2%. For
some reason, when the opacity is set to 1% or 0%, clicks are no longer in-
tercepted by the ClickGuard, but instead are applied to any window that
is directly behind the ClickGuard window on the desktop. The Click-
Guard’s background color is set to white, and with a 2% opacity, a very
slight “dimming” of the screen takes place whenever the ClickGuard is
activated. Future work would include some sort of workaround, either by
somehow achieving complete transparency but still preventing clicks, or by
developing another method to block mouse activity on the local machine

while retaining the ability to listen for it with the mouse hook.

o XML messaging protocol: currently, the CuRT system uses a consistent
but unstructured protocol for sending messages between the server and
the client. An XML messaging protocol would improve the readability of

the messages.

33

6.2 Extended features

o A more advanced MDE system using CuRT for input redirection: this
extended feature is the reason for which CuRT was written. As explained
throughout this paper, CuRT was designed primarily as a toolkit, not as
an application. The idea is that other developers can come along later and
develop full systems to drive MDEs, using CuRT to add the functionality

of cursor/keyboard redirection.

e FEdge detection studies: several studies could be performed related to the
two edge detection systems (speed detection and loiter detection) that
are included in the CuRT system. The general questions to be answered
with these studies are whether each edge detection system is effective and
“natural” to the user, and whether one or both systems should be used in

future systems that include cursor/keyboard redirection.

e Simultaneous keyboard input in two separate windows on the same ma-
chine: though it borders on CuRT losing its universality and application
independence, one possible additional feature is to allow simultaneous key-
board input in two separate windows on the same machine using keyboard
redirection. The reason that application independence is lost is that there
would need to be a direct pipeline from the machine that is sending the
keyboard input remotely to the local machine (if not, then there is no way
to distinguish the keypresses from the local machine and the keypresses

from the remote machine).

o Customizable cursor icons: currently, the CuRT system provides the abil-
ity to set a virtual cursor icon to one of ten possible colors. The cursor is
always the shape of a standard cursor, only the color can be set when the
CuRT client is initialized, and the color cannot be changed during runtime.
One possible addition to the system would be to allow arbitrary icons to
be set as the cursor’s icon at runtime. One example of this is to allow a
user’s photo or some other identifying image to represent the user’s cursor
in an MDE system. Another possible addition to the system would be to
allow all cursors present on a machine at a given time to change based on
the currently selected tool (e.g. a pencil tool in a paint program). The
problem with this is that a cursor’s icon on a machine changes based on
one of two events. First, the cursor may change if a tool is selected, as
mentioned above. Second, the cursor may change based on where the
mouse is currently located (hovering) on the screen. It may be the case
that not all cursors should change to the selected tool cursor, as some
may be currently hovering on an area where it would make more sense
for their cursor to be a different icon. It may be possible to achieve the

same hovering for virtual cursors as well, but this would probably require

34

significant resources. The simplest addition would be to allow arbitrary

image changes for any cursor at runtime.

35

Conclusion

The most exciting and promising aspect of the CuRT system is not the function-
ality provided by the toolkit itself, but rather the potential of future projects,
using the CuRT system as an API, to develop MDE systems that take collabora-
tion with multiple people and multiple machines to a new level. Much research
has been done on input redirection, and it seems to be one of the necessary
components of the collaborative MDE systems of the future. CuRT is simply
an imperfect approximation of how many-to-one input redirection would work
in a future operating system that truly supports it. The one-cursor-per-machine
limitation of current operating systems carries over and limits the CuRT sys-
tem in several aspects, as described in several chapters of this thesis. Systems
cannot be designed effectively without first testing them on real users in sim-
ulated environments, and systems using many-to-one input direction would be
no exception. Using CuRT and its imperfect many-to-one input redirection ca-
pability, future studies might conclude that many-to-one input redirection is
important enough to include as a low-level feature of an operating system. This
might mean that multiple input devices, representing multiple cursors, can be
connected to the same machine, or it might mean that one machine can send its
cursor to another machine, across a network, allowing both cursors to interact
with the same machine at the same time, with simultaneous clicks, drags, menu
selections, etc. The end goal of the CuRT system is for it to have played a part
in a push toward allowing multiple cursors on the same machine at the same

time, at the operating system level.

36

Appendix

8.1 CuRTClient Class Reference

8.1.1 Detailed Description

The CuRTClient class represents one client connected to a CuRTServer. The
CuRTClient has two main modes of operation, represented by the two different
CuRTClient constructors. One is the standalone application mode. In this
mode, the user manually specifies the connection parameters, and a GUI allows
the user to send his cursor /keyboard input to other machines in the system and
then return his cursor/keyboard input back to his own machine. To execute
the CuRTClient in this mode, just run this compiled code (the main method
of this class starts the CuRTClient in the standalone application mode). The
other mode is to use the CuRTClient as an API. In this mode, a developer
specifies all connection parameters in the CuRTClient constructor. Then,
method calls in this class can be called to manipulate the client and to interact

with other clients.

8.1.2 Constructor & Destructor Documentation
8.1.2.1 CuRTClient ()

This is one of two CuRTClient constructors. This one is used in standalone
application mode. This one simply starts the CuRTGUI, which then starts the
ConnectionBox. The ConnectionBox allows the user to specify the connection

parameters manually.

8.1.2.2 CuRTClient (String newClientName, String newlP,
KeyModifiers newModkey, Keys newHotkey, CursorColors|]
newColorScheme, int newCursorMovementResolution,

EdgeDetectionParams newEdgeDetectionParams)

This is one of two CuRTClient constructors. This one is used the API mode.
This one takes in the same parameters that the user specifies manually in

the standalone application version. The GUI is started here as well, but the

37

ConnectionBox is bypassed.

8.1.3 Public Method Documentation
8.1.3.1 static bool AnotherInstanceRunning () [static]

This method counts the number of processes running with the same name as the
current one. It then returns true if this result is 1 (meaning that this process is
the only one running), or false otherwise. This is used to prevent two instances

of the CuRTClient from running at the same time.

8.1.3.2 int GetClientIndex (String name)

This is an API method that returns the index of the client with the specified
username. If there is no client with the specified username, -1 is returned.
Note: in the case of multiple clients with the same username, the first matching

username is returned.

8.1.3.3 bool [] GetClientIndicesCurrentlyRemotedToLocalMachine
0

This is an API method that returns a boolean array indicating which clients are
currently remoting their cursors to the local machine. A value of true at a given
index indicates that the client at that index is currently remoting to the local
machine, and a value of false indicates that the client at that index is either not

currently remoting to the local machine, or is not connected to the system.

8.1.3.4 String [] GetClientNameList ()

This is an API method that returns a String array containing the usernames of
all clients currently connected to the CuRT system. For every index where no
client is connected, the String ”[EMPTY]” is returned.

8.1.3.5 String [] GetClientNamesCurrentlyRemotedToLocal-
Machine ()

This is an API method that a String array containing the usernames of all
clients whose cursors are currently being remoted to the local machine. For
every index where the client is either not being remoted to the local machine or
is not connected to the system, the String ”[EMPTY]” is returned.

38

8.1.3.6 String GetClientUsername (int index)

This is an API method that returns the username of the client at the specified
index. If there is no client at that specified index, the String ”"[EMPTY]” is

returned.

8.1.3.7 CursorColors GetCursorColor (String name)

This is an API method that returns an enumerated CursorColors value indicat-

ing the color of the cursor with the specified client name.

8.1.3.8 CursorColors GetCursorColor (int index)

This is an API method that returns an enumerated CursorColors value indicat-

ing the cursor’s color at the specified index.

8.1.3.9 Point GetCursorPosition (String name)

This is an API method that returns a Point value indicating the coordinate
position on the local machine of the cursor with the speficied client username.
If the client with the specified username is not currently being remoted to the
local machine, or there is no such client with the speficied username, an empty

Point object is returned.

8.1.3.10 Point GetCursorPosition (int index)

This is an API method that returns a Point value indicating the coordinate
position on the local machine of the cursor with the speficied client index. If
the client at the specified index is not currently being remoted to the local
machine, or is not connected to the system at all, an empty Point object is

returned.

8.1.3.11 Screen GetCursorScreen (String name)

This is an API method that returns a Screen object that represents the screen
(for use in multi-screen setups) where the cursor with whose client has the
specified username is currently located. If there is no client with that username,
or if the client with that username is not currently remoting its cursor to the

local machine, a null object is returned.

39

8.1.3.12 Screen GetCursorScreen (int index)

This is an API method that returns a Screen object that represents the screen
(for use in multi-screen setups) where the cursor with the specified index is
currently located. If there is no cursor at that index, or if that cursors is not

currently being remoted to the local machine, a null object is returned.

8.1.3.13 int GetLocalClientIndex ()

This is an API method that returns index of the local client.

8.1.3.14 String GetLocalClientUsername ()

This is an API method that returns username of the local client.

8.1.3.15 CursorColors GetLocalCursorColor ()

This is an API method that returns an enumerated CursorColors value indicat-

ing the local cursor’s color.

8.1.3.16 Point GetLocalCursorPosition ()

This is an API method that returns a Point value indicating the local cursor’s
coordinate position on the local machine. If the local cursor is currently being

remoted, an empty Point object is returned.

8.1.3.17 int GetLocalCursorRemoteIndexLocation ()

This is an API method that returns an integer indicating the index of the client
where the local cursor is currently being remoted. If the local cursor is not

currently being remoted, a value of -1 is returned.

8.1.3.18 String GetLocalCursorRemoteUsernameLocation ()

This is an API method that returns a String representing the username of the of
the client where the local cursor is currently being remoted. If the local cursor

is not currently being remoted, the String ” [Empty]” is returned.

8.1.3.19 Screen GetLocalCursorScreen ()

This is an API method that returns a Screen object that represents the screen

(for use in multi-screen setups) where the local cursor is currently located. If

40

the local cursor is currently being remoted, a null object is returned.

8.1.3.20 bool IsLocalCursorCurrentlyRemote ()

This is an API method that returns a boolean indicating whether the local
machine’s cursor is currently being remoted to another machine in the CuRT

system.

8.1.3.21 static void Main () [static]

This is the CuRTClient Main method. It simply starts the CuRTClient in
standalone application mode. To use the CuRTClient in the API mode, do
not execute this Main method. Rather, create an instance of a CuRTClient

object and pass it the appropriate parameters.

8.1.3.22 bool RemoveLocalCursorFromRemote (Point

newLocation)

This is an API method that attempts to remove the local cursor from a remote
client. If the local cursor is currently being remoted on a remote client, then
it is returned to the local machine and is moved to the coordinates of the new-
Location parameter, and true is returned. If it is not currently beind remoted,
then false is returned. If the point parameter is an empty point object, the

cursor’s new location is set to (0,0).

8.1.3.23 Point SendLocalCursorToRemoteMachine (String

username, Point startingLocation)

This is an API method that sends the local cursor to a remote machine, at
the specified X and Y coordinates. The current location of the local cursor on
the local machine is returned as a Point object. If the local cursor is already
being remoted, it is first removed from the remote machine, and then sent to
the new remote machine (an Empty point is returned in that case). If the index

parameter is the same as the local index, an Empty point is returned.

8.1.3.24 Point SendLocalCursorToRemoteMachine (int indez,

Point startingLocation)

This is an API method that sends the local cursor to a remote machine, at
the specified X and Y coordinates. The current location of the local cursor on
the local machine is returned as a Point object. If the local cursor is already

being remoted, it is first removed from the remote machine, and then sent to

41

the new remote machine (an Empty point is returned in that case). If the index

parameter is the same as the local index, an Empty point is returned.

8.1.3.25 Point SendRemoteCursorToOwnMachine (String

cursorName, Point newLocation)

This is an API method that attempts to send a virtual cursor from the local
machine ”back home” to its local machine. If the virtual cursor with the speci-
fied username is not currently remoted to the local machine, or if no client with
the specified username exists in the CuRT system, an empty point object is
returned. Otherwise, the virtual cursor is sent back to its own machine, and
a point object with the virtual cursor’s final position on the local machine is
returned. If the point parameter is an empty point object, the cursor’s new

location is set to (0,0).

8.1.3.26 Point SendRemoteCursorToOwnMachine (int cursorInder,

Point newLocation)

This is an API method that attempts to send a virtual cursor from the local
machine ”back home” to its local machine. If the virtual cursor at the specified
index is not currently remoted to the local machine, or if the client at the
specified index is not currently connected to the CuRT system, an empty point
object is returned. Otherwise, the virtual cursor is sent back to its own machine,
and a point object with the virtual cursor’s final position on the local machine
is returned. If the point parameter is an empty point object, the cursor’s new

location is set to (0,0).

8.1.3.27 Point SendRemoteCursorToRemoteMachine (String

cursorName, String machineName, Point newLocation)

This is an API method that attempts to send a virtual cursor from the local
machine to a remote machine. If there is no virtual cursor on the local machine
with the specified index, or if there is no client connected at the indicated
destination index, or if the specified cursor index is the local index, or if the
specified destination machine index is the local index, an empty point object
is returned. Otherwise, the virtual cursor is passed to the indicated remote
machine, and a point object with the virtual cursor’s final position on the local
machine is returned. If the point parameter is an empty point object, the

cursor’s new location is set to (0,0).

42

8.1.3.28 Point SendRemoteCursorToRemoteMachine (int

cursorInder, String machineName, Point newLocation)

This is an API method that attempts to send a virtual cursor from the local
machine to a remote machine. If there is no virtual cursor on the local machine
with the specified index, or if there is no client connected at the indicated
destination index, or if the specified cursor index is the local index, or if the
specified destination machine index is the local index, an empty point object
is returned. Otherwise, the virtual cursor is passed to the indicated remote
machine, and a point object with the virtual cursor’s final position on the local
machine is returned. If the point parameter is an empty point object, the

cursor’s new location is set to (0,0).

8.1.3.29 Point SendRemoteCursorToRemoteMachine (String

cursorName, int machinelIndex, Point newLocation)

This is an API method that attempts to send a virtual cursor from the local
machine to a remote machine. If there is no virtual cursor on the local machine
with the specified index, or if there is no client connected at the indicated
destination index, or if the specified cursor index is the local index, or if the
specified destination machine index is the local index, an empty point object
is returned. Otherwise, the virtual cursor is passed to the indicated remote
machine, and a point object with the virtual cursor’s final position on the local
machine is returned. If the point parameter is an empty point object, the

cursor’s new location is set to (0,0).

8.1.3.30 Point SendRemoteCursorToRemoteMachine (int

cursorInder, int machinelndex, Point newLocation)

This is an API method that attempts to send a virtual cursor from the local
machine to a remote machine. If there is no virtual cursor on the local machine
with the specified index, or if there is no client connected at the indicated
destination index, or if the specified cursor index is the local index, or if the
specified destination machine index is the local index, an empty point object
is returned. Otherwise, the virtual cursor is passed to the indicated remote
machine, and a point object with the virtual cursor’s final position on the local
machine is returned. If the point parameter is an empty point object, the

cursor’s new location is set to (0,0).

43

8.2 CursorOnEdgeEventArgs Class Reference

8.2.1 Detailed Description

This class encapsulates the data members that are set when an edge detection
event is fired. This information is returned to the member that receives the event
so that an appropriate action (such as moving the cursor to another screen) can
be taken.

8.2.2 Public Member Variables

e readonly int cursorIndex

the index (0-9) of the machine that is controlling the cursor

e readonly String cursorName

the user-specified name of the machine that is controlling the cursor

e readonly Point cursorLocation

a point that contains the coordinates (X,Y) of the cursor at the

moment when the event is fired

e readonly ScreenEdges edge

an enumerated ScreenEdges object representing the particular edge

(top, bottom, left, or right) where the edge detection occurred

e readonly Screen screen

a Screen object representing the particular screen where the edge

detection occurred (for use with multi-screen setups)

e readonly int source

an integer representing the type of edge detection that occurred (0
= Speed Detection; 1 = Loiter Detection)

8.2.3 Constructor & Destructor Documentation

8.2.3.1 CursorOnEdgeEventArgs.CursorOnEdgeEventArgs (int
cursorIndex, String cursorName, Point cursorLocation,

ScreenEdges edge, Screen screen, int source)

CursorOnEdgeEvent Args constructor.

44

This constructor just takes the abovementioned six values as parameters and

assigns their values to the appropriate member variables.

8.3 CursorOnEdgeListener Class Reference

CursorOnEdgeListener.

8.3.1 Detailed Description

CursorOnEdgeListener.

This is a method that is called whenever the edge detection event is fired. This
method currently just displays all pertinent information to the console window,

but it can be redefined to take more interesting actions.

8.4 EdgeDetectionParams Class Reference

8.4.1 Detailed Description

This class encapsulates the parameters needed for both edge detection systems,

Speed Detection and Loiter Detection.

8.4.2 Public Member Variables
8.4.2.1 int EdgeDetectionParams.loiterMovementsNeeded

loiterMovementsNeeded (Loiter Detection) A loiter movement occurs when all
of the following are true: 1) either the X or the Y coordinate is one of the edges
of the screen (top, bottom, left, or right) 2) a change in cursor coordinate is
detected 3) the coordinate that was on one of the edges of the screen remains

on the edge (i.e. only the other coordinate changes)

Whenever a cursor movement is detected that is NOT a loiterMovement, the
loiterMovement count is reset to 0. If the loiterMovement count reaches the

loiterMovementsNeeded parameter, a Edge Detection event is fired.

8.4.2.2 int EdgeDetectionParams.miniJumpSize

the minimum size (in pixels) of one mini jump

45

8.4.2.3 int EdgeDetectionParams.miniJumpsNeeded

This is the number of mini jumps in a row that are needed to trigger an edge
detection. A mini jump occurs when all of the following are true: 1) a change in
cursor coordinate is detected 2) the cursor is within one of the zones specified
by the zoneSize parameter (see below) 3) the cursor is moving toward the edge
of the screen that corresponds to the particular zone 4) the change of position,
in pixels, of the cursor’s position (the X coordinate in the case of movement
toward the left or right edge of the screen, and the Y coordinate in the case of
movement toward the top or bottom edge of the screen) is greater than or equal

to the miniJumpSize parameter

Whenever a cursor movement is detected that does NOT trigger a minijump,
the minijump count is reset to 0. If the miniJump count reaches the miniJumps-

Needed parameter, a Edge Detection event is fired.

8.4.2.4 int EdgeDetectionParams.zoneSize

the size (in pixels) of the zone at the top, bottom, left, and right edge of the

screen where mini jumps can occur

8.4.3 Constructor & Destructor Documentation

8.4.3.1 EdgeDetectionParams.EdgeDetectionParams (int
miniJumpsNeeded, int zoneSize, int miniJumpSize, int

loiterMovementsNeeded)

The EdgeDetectionParams constructor.

This constructor just copies values over from the parameters to the object’s
member variables. It also makes appropriate adjustments to the values if the
user has signified that he wants to disable one or both of the systems (by passing
-1 as the parameter). This constructor is to be used by developers using the
CuRT system API in order to specify the parameters of the Edge Detection
system. The newly created EdgeDetectionParams object is then passed into
the CuRTClient constuctor.

46

References

[1]

P. Baudisch, E. Cutrell, D. Robbins, M. Czerwinski, P. Tandler, B. Bed-
erson, and Z. Zierlinger. Drag-and-pop and drag-and-pick: Techniques for
accessing remote screen content on touch- and pen-operated systems.

Lior Berry, Lyn Bartram, and Kellogg S. Booth. Role-based control of
shared application views. In UIST ’05: Proceedings of the 18th annual
ACM symposium on User interface software and technology, pages 23-32,
New York, NY, USA, 2005. ACM Press.

Jacob T. Biehl and Brian P. Bailey. Aris: an interface for application
relocation in an interactive space. In GI ’04: Proceedings of the 200/
conference on Graphics interface, pages 107-116, School of Computer Sci-
ence, University of Waterloo, Waterloo, Ontario, Canada, 2004. Canadian
Human-Computer Communications Society.

Jacob T. Biehl and Brian P. Bailey. Improving scalability and awareness in
iconic interfaces for multiple-device environments. In AVI ’06: Proceedings
of the working conference on Advanced visual interfaces, pages 91-94, New
York, NY, USA, 2006. ACM Press.

Kellogg S. Booth, Brian D. Fisher, Chi Jui Raymond Lin, and Ritchie
Argue. The “mighty mouse” multi-screen collaboration tool. In UIST ’02:
Proceedings of the 15th annual ACM symposium on User interface software

and technology, pages 209-212, New York, NY, USA, 2002. ACM Press.

Barry Brumitt, Brian Meyers, John Krumm, Amanda Kern, and Steven A.
Shafer. Easyliving: Technologies for intelligent environments. In HUC "00:
Proceedings of the 2nd international symposium on Handheld and Ubiqui-
tous Computing, pages 12-29, London, UK, 2000. Springer-Verlag.

Olivier Chapuis and Nicolas Roussel. Metisse is not a 3d desktop! In UIST
’05: Proceedings of the 18th annual ACM symposium on User interface
software and technology, pages 13—22, New York, NY, USA, 2005. ACM
Press.

Maxime Collomb, Mountaz Hascoét, Patrick Baudisch, and Brian Lee. Im-
proving drag-and-drop on wall-size displays. In GI ’05: Proceedings of the
2005 conference on Graphics interface, pages 25-32, School of Computer
Science, University of Waterloo, Waterloo, Ontario, Canada, 2005. Cana-
dian Human-Computer Communications Society.

Jr. D. Austin Henderson and Stuart Card. Rooms: the use of multiple
virtual workspaces to reduce space contention in a window-based graphical
user interface. ACM Trans. Graph., 5(3):211-243, 1986

47

[10]

[11]

[12]

[13]

[16]

[18]

[19]

Scott Elrod, Richard Bruce, Rich Gold, David Goldberg, Frank Halasz,
William Janssen, David Lee, Kim McCall, Elin Pedersen, Ken Pier, John
Tang, and Brent Welch. Liveboard: a large interactive display supporting
group meetings, presentations, and remote collaboration. In CHI ’92: Pro-
ceedings of the SIGCHI conference on Human factors in computing systems,
pages 599607, New York, NY, USA, 1992. ACM Press.

Armando Fox, Brad Johanson, Pat Hanrahan, and Terry Winograd. Inte-
grating information appliances into an interactive workspace. IEEE Com-
put. Graph. Appl., 20(3):54-65, 2000.

S. Greenberg. Sharing views and interactions with single-user applications.
In Proceedings of the ACM SIGOIS and IEEE CS TC-OA conference on
Office information systems, pages 227-237, New York, NY, USA, 1990.
ACM Press.

Franois Guimbretiere, Maureen Stone, and Terry Winograd. Fluid interac-
tion with high-resolution wall-size displays. In UIST ’01: Proceedings of the
14th annual ACM symposium on User interface software and technology,
pages 21-30, New York, NY, USA, 2001. ACM Press.

Fredrik Hubinette. x2vnc. http://fredrik.hubbe.net/x2vnc.html.

Dugald Ralph Hutchings, Greg Smith, Brian Meyers, Mary Czerwinski, and
George Robertson. Display space usage and window management operation
comparisons between single monitor and multiple monitor users. In AVI
’04: Proceedings of the working conference on Advanced visual interfaces,
pages 32-39, New York, NY, USA, 2004. ACM Press.

Dugald Ralph Hutchings and John Stasko. Revisiting display space man-
agement: understanding current practice to inform next-generation design.
In GI ’04: Proceedings of the 2004 conference on Graphics interface, pages
127-134, School of Computer Science, University of Waterloo, Waterloo,
Ontario, Canada, 2004. Canadian Human-Computer Communications So-
ciety.

Brad Johanson and Armando Fox. The event heap: A coordination in-
frastructure for interactive workspaces. In WMCSA ’02: Proceedings of
the Fourth IEEE Workshop on Mobile Computing Systems and Applica-
tions, page 83, Washington, DC, USA, 2002. IEEE Computer Society.

Brad Johanson, Greg Hutchins, Terry Winograd, and Maureen Stone.
Pointright: experience with flexible input redirection in interactive
workspaces. In UIST ’02: Proceedings of the 15th annual ACM sympo-
sium on User interface software and technology, pages 227-234, New York,
NY, USA, 2002. ACM Press.

Azam Khan, George Fitzmaurice, Don Almeida, Nicolas Burtnyk, and Gor-
don Kurtenbach. A remote control interface for large displays. In UIST
’04: Proceedings of the 17th annual ACM symposium on User interface
software and technology, pages 127-136, New York, NY, USA, 2004. ACM
Press.

48

[20]

[23]

[30]

Azam Khan, Justin Matejka, George Fitzmaurice, and Gordon Kurten-
bach. Spotlight: directing users’ attention on large displays. In CHI ’05:
Proceedings of the SIGCHI conference on Human factors in computing sys-
tems, pages 791-798, New York, NY, USA, 2005. ACM Press.

J. Chris Lauwers and Keith A. Lantz. Collaboration awareness in support of
collaboration transparency: requirements for the next generation of shared
window systems. In CHI ’90: Proceedings of the SIGCHI conference on
Human factors in computing systems, pages 303-311, New York, NY, USA,
1990. ACM Press.

Mary D. P. Leland, Robert S. Fish, and Robert E. Kraut. Collaborative
document production using quilt. In CSCW ’88: Proceedings of the 1988
ACM conference on Computer-supported cooperative work, pages 206-215,
New York, NY, USA, 1988. ACM Press.

Du Li and Rui Li. Transparent sharing and interoperation of heterogeneous
single-user applications. In CSCW ’02: Proceedings of the 2002 ACM con-
ference on Computer supported cooperative work, pages 246-255, New York,
NY, USA, 2002. ACM Press.

Masood Masoodian, Sam McKoy, Bill Rogers, and David Ware. Deepdoc-
ument: use of a multi-layered display to provide context awareness in text
editing. In AVI ’04: Proceedings of the working conference on Advanced
visual interfaces, pages 235-239, New York, NY, USA, 2004. ACM Press.

Brad A. Myers. The pebbles project: using pcs and hand-held computers
together. In CHI ’00: CHI 00 extended abstracts on Human factors in
computing systems, pages 14-15, New York, NY, USA, 2000. ACM Press.

Brad A. Myers, Rishi Bhatnagar, Jeffrey Nichols, Choon Hong Peck, Dave
Kong, Robert Miller, and A. Chris Long. Interacting at a distance: mea-
suring the performance of laser pointers and other devices. In CHI ’02:

Proceedings of the SIGCHI conference on Human factors in computing sys-
tems, pages 33—40, New York, NY, USA, 2002. ACM Press.

Miguel A. Nacenta, Dzmitry Aliakseyeu, Sriram Subramanian, and Carl
Gutwin. A comparison of techniques for multi-display reaching. In CHI
’05: Proceedings of the SIGCHI conference on Human factors in computing
systems, pages 371-380, New York, NY, USA, 2005. ACM Press.

J. Karen Parker, Regan L. Mandryk, and Kori M. Inkpen. Tractorbeam:
seamless integration of local and remote pointing for tabletop displays. In
GI ’05: Proceedings of the 2005 conference on Graphics interface, pages 33—
40, School of Computer Science, University of Waterloo, Waterloo, Ontario,
Canada, 2005. Canadian Human-Computer Communications Society.

Elin Ronby Pedersen, Kim McCall, Thomas P. Moran, and Frank G. Ha-
lasz. Tivoli: an electronic whiteboard for informal workgroup meetings.
In CHI ’93: Proceedings of the SIGCHI conference on Human factors in
computing systems, pages 391-398, New York, NY, USA, 1993. ACM Press.

Shankar R. Ponnekanti, Brian Lee, Armando Fox, Pat Hanrahan, and Terry
Winograd. ICrafter: A service framework for ubiquitous computing envi-
ronments. Lecture Notes in Computer Science, 2201, 2001.

49

[31]

[33]

[34]

[35]

[43]

Jun Rekimoto. Pick-and-drop: a direct manipulation technique for multiple
computer environments. In UIST ’97: Proceedings of the 10th annual ACM
symposium on User interface software and technology, pages 31-39, New
York, NY, USA, 1997. ACM Press.

Jun Rekimoto and Masanori Saitoh. Augmented surfaces: a spatially con-
tinuous work space for hybrid computing environments. In CHI ’99: Pro-
ceedings of the SIGCHI conference on Human factors in computing systems,
pages 378-385, New York, NY, USA, 1999. ACM Press.

George Robertson, Eric Horvitz, Mary Czerwinski, Patrick Baudisch,
Dugald Ralph Hutchings, Brian Meyers, Daniel Robbins, and Greg Smith.
Scalable fabric: flexible task management. In AVI ’04: Proceedings of the
working conference on Advanced visual interfaces, pages 85-89, New York,

NY, USA, 2004. ACM Press.

George Robertson, Maarten van Dantzich, Daniel Robbins, Mary Czerwin-
ski, Ken Hinckley, Kirsten Risden, David Thiel, and Vadim Gorokhovsky.
The task gallery: a 3d window manager. In CHI ’00: Proceedings of the
SIGCHI conference on Human factors in computing systems, pages 494—
501, New York, NY, USA, 2000. ACM Press.

Manuel Romén, Christopher Hess, Renato Cerqueira, Anand Ranganathan,
Roy H. Campbell, and Klara Nahrstedt. Gaia: a middleware platform for
active spaces. SIGMOBILE Mob. Comput. Commun. Rev., 6(4):65-67,
2002.

Robert W. Scheifler and Jim Gettys. The x window system. ACM Trans.
Graph., 5(2):79-109, 1986.

Ramona E. Su and Brian P. Bailey. Put them where? towards guidelines
for positioning large displays in interactive workspaces. Interact, pages
337-349, 2005.

Desney S. Tan, Brian Meyers, and Mary Czerwinski. Wincuts: manipulat-
ing arbitrary window regions for more effective use of screen space. In CHI
’04: CHI 04 extended abstracts on Human factors in computing systems,
pages 1525-1528, New York, NY, USA, 2004. ACM Press.

Masayuki Tani, Masato Horita, Kimiya Yamaashi, Koichiro Tanikoshi, and
Masayasu Futakawa. Courtyard: integrating shared overview on a large
screen and per-user detail on individual screens. In CHI ’94: Proceedings
of the SIGCHI conference on Human factors in computing systems, pages
44-50, New York, NY, USA, 1994. ACM Press.

Edward Tse, Jonathan Histon, Stacey D. Scott, and Saul Greenberg. Avoid-
ing interference: how people use spatial separation and partitioning in sdg
workspaces. In CSCW ’04: Proceedings of the 2004 ACM conference on
Computer supported cooperative work, pages 252-261, New York, NY, USA,
2004. ACM Press.

VNC. http://www.realvnc.com/.

Grant Wallace, Peng Bi, Kai Li, and Otto Anshus. A multi-cursor x win-
dow manager supporting control room collaboration. Princeton University,
Computer Science, Technical Report TR-707-04, July 2004.

x2x. http://ftp.digital.com/pub/DEC/SRC/x2x.

50

[44] Steven Xia, David Sun, Chengzheng Sun, David Chen, and Haifeng Shen.
Leveraging single-user applications for multi-user collaboration: the coword
approach. In CSCW ’04: Proceedings of the 2004 ACM conference on
Computer supported cooperative work, pages 162-171, New York, NY, USA,
2004. ACM Press.

o1

	List of Figures
	1 Introduction
	2 Design Goals
	3 Related Work
	3.1 Large Screens
	3.2 Multiple Desktops and Multiple Display Environments (MDEs)
	3.3 ``Reaching" with Large Displays
	3.4 Creating Views into Application Windows
	3.5 Application-Specific Collaboration
	3.6 Input Redirection
	3.7 Interfaces for Managing Applications in an MDE

	4 Usage Scenarios
	4.1 A Single User Giving a Presentation on a Large Display
	4.2 Multiple Users Doing Early Sketching to Create a Prototype
	4.3 Multiple Users Co-Writing a Paper
	4.4 One Continuous Desktop Comprised of Multiple Desktops

	5 CuRT Implementation
	5.1 Development Environment and System Requirements
	5.2 Basic Functionality
	5.2.1 Server/Client Architecture
	5.2.2 CuRT as a Standalone Application Versus CuRT as an API
	5.2.3 Loading and Unloading the Hotkey
	5.2.4 Mouse/Keyboard Hooks
	5.2.5 The VirtualCursor Class and Its Subclasses
	5.2.6 Network Message Codes

	5.3 Extended Functionality
	5.3.1 Cursor Update Resolution
	5.3.2 Edge Detection

	5.4 Notable Challenges
	5.4.1 When to Recognize Input, and When to Block It
	5.4.2 How Clicks and Drags Affect Other Cursors
	5.4.3 Cursor Looping and Pixel Mapping

	6 Future Work
	6.1 Basic Features
	6.2 Extended features

	7 Conclusion
	8 Appendix
	8.1 CuRTClient Class Reference
	8.1.1 Detailed Description
	8.1.2 Constructor & Destructor Documentation
	8.1.3 Public Method Documentation

	8.2 CursorOnEdgeEventArgs Class Reference
	8.2.1 Detailed Description
	8.2.2 Public Member Variables
	8.2.3 Constructor & Destructor Documentation

	8.3 CursorOnEdgeListener Class Reference
	8.3.1 Detailed Description

	8.4 EdgeDetectionParams Class Reference
	8.4.1 Detailed Description
	8.4.2 Public Member Variables
	8.4.3 Constructor & Destructor Documentation

	References

